Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Feller W. — Introduction to probability theory and its applications (volume 1)
Feller W. — Introduction to probability theory and its applications (volume 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Introduction to probability theory and its applications (volume 1)

Автор: Feller W.

Аннотация:

Major changes in this edition include the substitution of probabilistic arguments for combinatorial artifices, and the addition of new sections on branching processes, Markov chains, and the De Moivre-Laplace theorem.


Язык: en

Рубрика: Математика/Вероятность/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: third edition

Год издания: 1967

Количество страниц: 509

Добавлена в каталог: 29.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Ehrenfest model steady state      397
Ehrenfest, P. and T.      121
Eigenvalue = characteristic value      429
Einstein — Bose statistics      5 20 40 61 113
Einstein — Bose statistics negative binomial limit      62
Eisenhart, C. and Swed, F.S.      42.
Elastic barrier      343 368 377
Elastic force, diffusion under      378
Elevator problem      11 32 58
Elevator problem complete table      486
Ellis, R.E.      354
Empirical distribution      71
Entrance boundary      419
Epoch      73 300 306 444
Equalization      cf. “Changes of sign” “Returns
Equidistribution theorems      94 97
Equilibrium, macroscopic      395ff. 456
Equilibrium, return to      cf. “Returns to origin”
Erdoes, P.      82 211 312
Ergodic properties in Markov chains      393ff. 443
Ergodic properties in stochastic processes      455 482
Ergodic states      389
Erlang, A.K.      460
Erlang’s loss formula      464
Error function      179
ESP      55 407
Essential states      389
Estimation from recaptures and trapping      45 170
Estimation from samples      189 226 238
Estimator, unbiased      242
Events      8 13ff.
Events in product spaces      128ff.
Events independent      125ff.
Events, compatible      98
Events, simultaneous realization of      16 99 106 109
Evolution process (Yule)      450 (cf. “Genes”)
Exit boundary      416
Expectation      220ff.
Expectation from generating functions      265
Expectation infinite      265
Expectation of normal distribution      179
Expectation of products      227
Expectation of reciprocals      238 242
Expectation of sums      222
Expectation, conditional      223
Experiments compound and repeated      131
Experiments conceptual      9ff.
Exponential characterization by a functional equ.      459
Exponential distribution      446
Exponential holding times      458ff.
Exponential sojourn times      453
Extinction in birth and death processes      457
Extinction in bivariate branching processes      302
Extinction in branching processes      295ff.
Extinction of family names      294
Extinction of genes      136 295 400
Extra Sensory Perception      55 407
Factorials      29
Factorials gamma function      66
Factorials Stirling’s formula      52 66
Fair games      248ff. 346
Fair games with infinite expectation      252
Fair games, unfavorable      249 262
Faltung      “Convolution”
Families dishwashing      56
Families, sex distribution in      117 118 126 141 288
Family names, survival of      294
Family relations      144
Family size, geometric distribution for      141 294 295
Ferguson, T.S.      237
Fermi — Dirac statistics      5 40
Fermi — Dirac statistics for misprints      42 58
Finucan, H.M.      28 239
Fire      cf. “Accidents”
Firing at targets      10 169
First passage times in Bernoulli trials and random walks      88 271 274 343ff.
First passage times in Bernoulli trials and random walks Explicit formulas      89 274 275 351 353 368
First passage times in Bernoulli trials and random walks limit theorems      90 360 “Returns “Waiting
First passage times in diffusion      359 368 370
First passage times in Markov chains      388
First passage times in stochastic processes      481 (cf. “Absorption probabilities”)
Fish catches      45
Fisher, R.A.      6 46 149 380
Fission      294
Flags, display of      28 36
Flaws in material      159 170
Flying bomb hits      160
Fokker — Planck equation      358
Forward equations      358 469 473 482
Frame, J.S.      367
Frechet, M.      98 111 375
Freedman, D.      78
Frequency function      179
Friedman, B. (urn model)      119 121 378
Fry, T.C.      460
Fuerth, R.      422
Fuerth’s formula      359
Furry, W.H.      451
G. — M. Counters      cf. Geiger counters
Galton, F.      70 256 294
Galton’s rank order test      69 94
Gambling systems      198ff. 345
Gamma function      66
Gauss (= normal) distribution      179
Geiger counters      11
Geiger counters as Markov chain      425
Geiger counters general types      339
Geiger counters type I      306 315
Geiringer, H.      6
Generalized Poisson process      474
Generating functions      264
Generating functions, bivariate      279
Generating functions, moment      285 301
Genes      132ff.
Genes evolution of frequencies      135ff. 380 400
Genes inheritance      256
Genes mutations      295
Genes Yule process      450
Genetics      132ff.
Genetics branching process      295
Genetics Yule process      450
Genetics, Markov chains in      379 380 400
Geometric distribution      216
Geometric distribution as limit for Bose — Einstein statistics      61
Geometric distribution as negative binomial      166 224
Geometric distribution characterization      237 328
Geometric distribution convolutions      269
Geometric distribution exponential limit      458
Geometric distribution generating function      268
Gnedenko, B.V.      71
Goncarov, V.      258
Good, I.J.      298 300
Greenwood, J.A. and Stuart, E.E.      56 407
Greenwood, R.E.      61
Groll, P.A. and Sobel, M.      239
Grouping of states      426
Grouping, tests of      42
guessing      107
Gumbel, E.J.      156
Halstroem, H.L.      460
Hamel equation      459
Hardy, G.H. and Littlewood, J.E.      209
Hardy’s law      135
Hardy’s law nonapplicability to pairs      144
Harris, T.E.      297 426
Hausdorff, F.      204 209
Heat flow      cf. “Diffusion” “Ehrenfest
Heterozygotes      133
Higher sums      421
Hitting probabilities      332 339
Hodges, J.L.      69
Hoeffding, W.      231
Holding times      458ff.
Holding times as branching process      286
Homogeneity, test for      43
Homozygotes      133
Hybrids      133
Hypergeometric distribution      43ff.
Hypergeometric distribution approximation by binomial and by Poisson      59 172
Hypergeometric distribution approximation by normal distr.      194
Hypergeometric distribution as limit in Bernoulli — Laplace model      397
Hypergeometric distribution moments      232
Hypergeometric distribution, multiple      47
Hypothesis for conditional probability      115
hypothesis, statistical      cf. “Estimation” “Tests”
Images, method of      72 369
Implication      16
Improper (= defective) random variable      273 309
Independence, stochastic      125ff.
Independence, stochastic pair-wise but not mutual      127 143
Independent experiments      131
Independent increments      292
Independent random variables      217 241
Independent random variables pairwise but not mutually      220
Independent trials      128ff.
Indistinguishable elements in problems of occupancy and arrangements      38ff. 58
Indistinguishable elements in problems of occupancy and arrangements elementary examples      11 20 36
Infinite moments      246 265
Infinite moments limit theorems involving      90 252 262 313 322
Infinitely divisible distributions      289
Infinitely divisible distributions factorization      291
inheritance      256 (cf. “Genetics”)
Initials      54
Insect litters and survivors      171 288
Inspection sampling      44 169 238
Inspection sampling, sequential      363 368
Intersection of events      16
Invariant distributions and measures (in Markov chains)      392ff. 407ff.
Invariant distributions and measures periodic chains      406 (cf. “Stationary distributions”)
Inverse probabilities (in Markov chains)      414
Inversions (in combinations)      256
Irradiation, harmful      10 55 112
Irradiation, harmful Poisson distribution      161 287
Irreducible chains      384 390ff.
Ising’s model      43
Iterated logarithm, law of the      186 204ff.
Iterated logarithm, law of the stronger form      211
Iterated logarithm, law of the stronger form, Number theoretical interpretation      208
Kac, M.      55 82 121 378 438
Karlin, S. and McGregor, J.L.      455
Kelvin’s method of images      72 369
Kendall, D.G.      288 295 456
Kendall, M.G. and Smith, B.      154
Key problems      48 55 141 239
Khintchine, A.      195 205 209 244
Kolmogorov — Smirnov type tests      70
Kolmogorov, A.      6 208 312 354 375 389 419 461
Kolmogorov’s criterion      259
Kolmogorov’s criterion converse      263
Kolmogorov’s differential equations      475
Kolmogorov’s inequality      234 (cf. “Chapman — Kolmogorov equation”)
Koopman, B.O.      4
Kronecker symbols      428
Ladder variables      305 315
Lagrange, J.L.      285 353
Laplace, P.S.      100 179 264
Laplace’s law of succession      124 (cf. “Bernoulli — Laplace model” “DeMoivre
Large numbers, strong law of      258 262
Large numbers, strong law of, for Bernoulli trials      203
Large numbers, weak law of      243ff. 254
Large numbers, weak law of generalized form (with infinite expectations)      246 252
Large numbers, weak law of, for Bernoulli trials      152 195 261
Large numbers, weak law of, for dependent variables      261
Large numbers, weak law of, for permutations      256
Largest observation, estimation from      226 238
Last visits (arc sine law)      79
Leads, distribution of      78ff. 94
Leads, distribution of, experimental illustration      86ff.
Leads, distribution of, experimental illustration, Galton’s rank order test      69
Ledermann, W. and Reuter, G.E.      455
Lefthanders      169
Levy, Paul      82 290
Li, C.C. and Sacks, L.      144
Lightning, damage from      289 292
Lindeberg, J.W.      244 254 261
Linear growth process      456 480
Little wood, J.E.      209
Ljapunov, A.      244 261
Logarithm, expansion for      51
Logarithmic distribution      291
Long chain molecules      11 240
Long leads in random walks      78ff.
Loss formula, Erlang’s      464
Loss, coefficient of      466
Lotka, A.J.      141 294
Lunch counter example      42
Lundberg, O.      480
Machine servicing      462ff. (cf. “Power supply”)
Macroscopic equilibrium      395ff. 456
Malecot, G.      380
Mallows, C.L. and Barton, D.E.      69
Marbe, K.      147
Margenau, H. and Murphy, G.M.      41
Marginal distribution      215
Markov chains      372ff.
Markov chains of infinite order      426
Markov chains, mixing of      426
Markov chains, superposition of      422
Markov process      419ff.
Markov process with continuous time      444ff. 470ff.
Markov process with continuous time, Markov property      329
Markov, A.      244 375
Martin, R.S. (boundary)      419
Martingales      399
Match box problem      166 170 238
Matches = coincidences      100 107
Matching of cards      107ff. 231
Matching of cards, multiple      112
Mating (assortative and random)      134
Mating brother-sister mating      143 380 441
Maxima in random walks distribution      369
Maxima in random walks position      91ff. 96
Maxima in random walks position arc sine laws      93
Maximal solution (in Markov chains)      401
Maximum likelihood      46
Maxwell, C.      72 (cf. “Boltzmann — Maxwell statistics”)
McCrea, W.H. and Whipple, F.J.W.      360 362
McGregor, J. and Karlin, S.      455
Mean      cf. “Expectation”
Median      49 220
Memory in waiting times      328 458
Mendel, G.      132
Miller, K.W. and Adler, H.A.      467
Minimal solution for Kolmogorov differential equations      475
Minimal solution in Markov chains      403
Mises relating to occupancy problems      32 105 106 341
Misprints      11
Misprints estimation      170
Misprints Poisson distribution      156 169
Misprints, Fermi — Dirac distribution for      42 58
Mixtures of distributions      301
Mixtures of Markov chains      426
Mixtures of populations      117 121
Molina, E.C.      155 191
Moment generating function      285 301
Moments      227
Moments, infinite      246 265
Montmort, P.R.      100
Mood, A.M.      194
Moran, P.A.P.      170
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте