Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Cohn P.M. — Skew Fields : Theory of General Division Rings (Encyclopedia of Mathematics and its Applications)
Cohn P.M. — Skew Fields : Theory of General Division Rings (Encyclopedia of Mathematics and its Applications)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Skew Fields : Theory of General Division Rings (Encyclopedia of Mathematics and its Applications)

Автор: Cohn P.M.

Аннотация:

Algebraists have studied noncommutative fields (also called skew fields or division rings) less thoroughly than their commutative counterparts. Most existing accounts have been confined to division algebras, i.e. skew fields that are finite dimensional over their center. This work offers the first comprehensive account of skew fields. It is based on the author's LMS Lecture Note Volume "Skew Field Constructions". The axiomatic foundation and a precise description of the embedding problem precedes an account of algebraic and topological construction methods. The author presents his general embedding theory with full proofs, leading to the construction of skew fields. The author has simplified his treatment of equations over skew fields and has extended it by the use of matrix methods. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form. Notes and comments at the end of chapters provide historical background. The book will appeal to researchers in algebra, logic, and algebraic geometry, as well as graduate students in these fields.


Язык: en

Рубрика: Математика/Теория чисел/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 258

Добавлена в каталог: 28.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Multiplicative commutator      143 238
Multiplicative function      444
Multiplicative group of a field      4 143ff 150f
Multiplicative set      15
Multiplicative set of matrices      157
N-group      106 150
N-invariant subgroup      109
Near field, ring      5 7 45
Negative element      457
Nilpotent group      144
Non-singular at infinity      370
Norm      422
Normal basis theorem      137 290
Normal field extension      306
Normal form in a free ring      294
normalizer      263
Nullity condition      180
Nullstellensatz      411ff 415 419
Numerator      159 201
One      3
One-unit      424
Opposite ring      97
Order of a block      196
Order-unit      188
Ordered field      457
Ordered group      75 421
Ordered ring      457
Ore condition      15
Ore domain      16
Ore set      16
Outer cyclic extension      133
Outer derivation      50
Outer Galois group      110
P(R)ID = principal (right) ideal domain      49
p-adic valuation      469
PAC = polynomially algebraically closed      371 418
Partition lemma      36
Partly well-ordered      73
Perfect closure of a commutative field      316
PI-algebra      332
PI-degree      343
Place      423
Point singularity      408
Pointed bimodule      227
Polynomial      48
Polynomially algebraically closed      371
Positive cone      458
Positive element      457
Posner’s theorem      343
Power series      38 66ff
Presentation of a field      279
Prime (left, right) matrix      197
Prime avoidance lemma      351 358
Prime matrix ideal      172
Prime ring      343
Prime subfield      4
Primitive element (theorem)      110 137
Primitive ring      10 82 92 332
Principal valuation      424
Profinite group      140
Projective-free ring      39 185
Proper (matrix) cone      458 463
Proper factorization      298
Proper matrix      368
Proper valuation on a ring      421
Pseudo-linear field extension      119
Pseudo-valuation      83 442 470
Pure element      207 215
Pure field extension      121
Pure matrix block      162
PWO = partly well-ordered      73
Quadratic field extension      118 126 268ff
Quasi-commutative valuation      430
Quasi-free point      403
Quasi-identity      9 46
Quasi-variety of algebras      9
Quaternion algebra      118 272f 373
Quaternions      45 56
Rabinowitsch trick      412
Radical matrix ideal      174
Radical matrix subvaluation      443f
Rank factorization      179
Rank function on projectives      187
Rank, of a free module      19
Rational closure      157 348
Rational expression function      335ff
Rational identity      335ff 345f
Rational meet      348
Rational relation      344
Rational topology      337 405
Rationality criterion      69
Ray singularity      408
Recursive, recursively enumerable      318f
Reduced admissible system      200
Reduced automorphism set      289
Reduced centre      68
Reduced element      208
Reduced matrix block      197
Reduced order      106
Reduced product      12
Reduced ring      10
Regular field extension      96
Regular matrix subvaluation      444
Regular ring      10 190
Regular subset      16
Regularization      444
Representation of a Lie algebra      89
Residue-class field      154
Resultant      416
retract      37
Reversible Ore set      16
Rg = category of rings      15 41
Rigid domain      33
Ringepimorphism      153
Root of a (matrix) subvaluation      443f
Schreier’s theorem      204 275
Seifert — Van Kampen theorem      275
Semifir      34 40 46
Semihereditary ring      39
Semilocal ring      350
Semiprime ring      13
Semiprimitive ring      10
Semiuniversal EC-field      314 414
Separable matrix      386
Separating coproduct      204
Similar elements, matrices      27 46
Simple ring      61 241f 391
Singular eigenvalue      370
Singular ideal      393
Singular kernel      156 439 452
Singular matrix      22 309
Singularity support      301 405
Skew cyclic matrix      384
Skew field      4
Skew polynomial ring      49
Skolem — Noether theorem      52 105
Small cancellation theory      276
Small matrix ideal      454
Socle of a ring      393
Specialization      154 344f 401
Specialization lemma      287 306 320 329
Spectrum      375
Split null extension      153 394
Stably associated matrices      24
Stably isomorphic modules      186
Staircase lemma      334
Standard identity      343
State      189
Steinitz number      146
Stria X-ring      348
Strictly cyclic module      27
Strongly regular ring      10
Submultiplicative function      442f
Subordinate projective module      186
Subordinate valuation      432
Subvaluation      83 442 470
Superficial matrix ideal      457
Superfluous block      163
Supernatural number      146
Support      74 215
Support relation      351ff 362
Supporting a family      352 355
Sylvester domain      180 185 201
Sylvester rank function      193
Sylvester’s law of nullity      180
Tensor ring      38 48 226
Topology of simple convergence      98
Torsion group      145
Torsion module      30
Torsion-free      30 229
Total (matrix) cone      458 465
Total divisor      380
Total subring      423
Totally algebraically closed      125
Totally coprime      29
Totally transcendental      234 379
Totally unbounded      29
Trace ideal      187
Trace in an outer cyclic extension      137
Transvection      220
Triangle inequality      422
Triangulable      371
Trivial relation      34
Trivial ring = zero ring      20
Trivial support relation      354
Trivial valuation      422
Trivializable      34
UFD = unique factorization domain      28
UGN = unbounded generating number      46 190 249
Ultrafilter, ultraproduct      11f 46
UNIT      14
UNIVERSAL class      9
Universal denominator      199 299
Universal derivation bimodule      251
Universal EC-field      314 415
Universal field of fractions      176f
Universal localization      15 177
Universal S-, $\Sigma$-inverting ring      15 156
Universal sentence      9
Unramified extension      449
V-ring      389 419
Valuation      83 421 469
Valuation ring      423
Value group      421
Variety of algebras      8
Variety over a skew field      408
von Neumann regular ring      10 190
Weak algorithm      38 232 276 293 297
Weakly finite      20 46 190 249
Weakly semihereditary ring      191f
Wedderburn’s theorem on finite fields      115 145 150
Well-positioned family      216
Weyl algebra, field      282
WF = weakly finite      20 190 249
Word problem      317 330
Zariski topology      337 405
Zero      3
Zig-zag lemma      312
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте