Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Wilansky A. — Modern Methods in Topological Vector Spaces
Wilansky A. — Modern Methods in Topological Vector Spaces



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Modern Methods in Topological Vector Spaces

Автор: Wilansky A.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1978

Количество страниц: 278

Добавлена в каталог: 16.12.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Pettis, B.J.      233 252
Phillips' Lemma      236
Point mass      243 260
Pointwise      33 104
polar      110
Polar family      118 119 120
Polar topology      119 120 123
Probability measure      266
PRODUCT      12 13 39 see Cauchy;Convergence;
Product, absorbing, open      14 50
Product, bornological      265
Product, dual      216 217 218
Product, neighborhoods      14 39
Product, separable      217
Product, subsets      40 217
Product, vs d      217
Projection on factor      12 13 14 76
Projection on subspace      31 see
Projection on subspace, $c_0$      31 147
Projection on subspace, Third dual      31
Projective limit      see $\sigma$
Properties of a dual pair      125
Pseudomelrizable      10 see
Pseudomelrizable, $\sigma$      97
Pseudomelrizable, bornivore      48
Pseudomelrizable, vector space      16
Ptak, V.      193 see
Quasibarrelled      151 see 21
Quasicomplement      63 257 see
Quasinorm      55
Quasireflexive      30 156
Quotient      77 see 2}$"/>;
Quotient, direct sum and inductive limit      211 214
Quotient, inf      81
Quotient, restriction      81
Quotient, semireflexive      155
Quotient, topology      114
Radon measure      224
Radon — Nikodym      239
Raimi, R.A.      159
Range closed      170 197 246 251 258
Range closed, dual map      170
Real vs complex      7
Real-compact      1 18
Reflexive Banach space      30 155 see
Reflexive Banach space, $c_0$, l      30 230
Reflexive Banach space, compatible, dual      31 108
Reflexive Banach space, disc      31
Reflexive Banach space, weak*      104 105
Reflexive Ic space      153 see ;Semireflexive
Regular      10 42 see
Relative topology      49
Relative topology, $\sigma$, $\tau$, Weak      105 109
Relative topology, compact, equicontinuous      143 180 183
Relatively: compact      130
Relatively: strong      109 see 21
Representation      63 81 see
Restriction      7 see
Restrictive      263
Reversible      69 98 see Right
Riemann — Lebesgue      35
Riesz representation      26
Right inverse      63 71
Robertson, W.      199
Row-finite      69 see
Same      see Tables 22 25
Saturated: family and hull      120 123
Saturated: subspace      81
SCC      167 192
Schatz, J.A.      9
Schauder, J.      64 see
Schur, I.      4 237
Scminorm      18 81
Second category      10 29 60 see 7;
Second dual      see Bidual
Seever, G.L.      253
Semibornological      126 see
Semiconservative      131
Semifredholm      177 231
Semimontel      90
Seminormed space      18 see
Semireflexive      153 155 199 see
Separable      25 143 see Duality
Separable quotient      208 254—258 see
Separable, $c_4$      71
Separable, admissible      144
Separable, dual pair      125 144
Separable, extreme points      235
Separable, in $l^{\alpha}$      144
Separable, no basis      66 147
Separated      42 95
Separating      39
Separation      101 102
Separation axioms      10 82
SEQUENTIAL      117 131 see
Sequentially barrelled      142 161 189 see
Sequentially closed: $c_0$ and C[0,1]      117
Sequentially closed: aw*, weak*      189 192
Sequentially closed: bounded      145
Sequentially closed: dense      138
Sequentially compact      see Weak*
Sequentially compact, closed graph      257
Sequentially compact, Eberlein — Smulian      229
Sequentially compact, Mazur      230
Sequentially complete      72 see 4 18 29 30;Boundedly;
Sequentially: continuous      47 93 118 see
Sequentially: dense      155
Sequentially: open      117
sgn      2
Shirai, T.      224
Silverman — Toeplitz      36 188
SIMPLE      24 240
Small      84 260
Smaller      see Minimal
Smaller Frechet      102
Smaller norm      60 118 192
Smallest topology      40 see
Snyder, A.K.      258
Sobczyk, A.      146
Solid      36 123
span      7
Spectrum      146
Stone — Cech      145 146
Stone, M.H.      146 244
Strict inductive limit      218—224 see
Strict topology      265
Strictly      16 101
Strictly hypercomplete      191 192 see 12 21
Strong dual      149 see 19
Strong topology      119
Strong*      see Base
Strong, bounded      133 157 see
Stronger      16 see
Subserics      251 252
Sum of subsets      43 82 89 226 264 see
Summability      see Banach — Saks; $\chi$; Coercive; FH Matrix; $\omega_1$; Reversible; Semionservative ; Silverman — Toeplitz;Tauberian; Unbounded
Sup norm      2
Sup of paranorms      18
Sup topology      11 see
Sup topology, $T_{\chi}$      123
Sup topology, BTB      85
Sup topology, complete      76
Sup topology, dual      96 98
Sup topology, product      14
Sup topology, smallest      13
Sup topology, TVS      38 97
Sup topology, weak      106
Support      29
t      117 118 265
Tauberian      175 231
Test functions      222 see 28
Test topology      209
Topoloay of uniform convenience      see $T^0$
Topoloay of uniform convenience, $T_{\mathscr{A}}$      
120
Topoloay of uniform convenience, bounded      see b(X)
Topoloay of uniform convenience, complete      178
Topoloay of uniform convenience, equicontinuous      129
Topoloay of uniform convenience, on $U^0$      121
Topological      see Divisors of 0
Topological vector space      37
Topologically complete      14 55
total      18 31
Total dual      95
Total fundamental      104 112
Totally bounded      83—86 89 190 see 31
Two-norm      265
Tychonoff, A.      89
Type M      98
Ulam, S.      265
Ultrabanelled      140 see
Ultrafiltcr      87—89
Unbounded sequences      140 141
Uniform boundedness      33 114 137 157 159 see
Uniformly: bounded      33 35 142
Uniformly: continuous      17
Uniformly: convergent      14 29 see
Uniqueness      59 70 202 203 221 see
Unit disc      see Disc
Universal      see Embedding l
Unrestricted inductive limit      210
Variation      235
Vecch, W.A.      146
Vector topology      37 45
Voight,.!.      251
Von Neumann. J.      90
w      12 13 38 39
Weak(ly)      12 97 131 see Relative s
Weak(ly) basis      66 141
Weak(ly) compact map      174—177
Weak(ly) compact set      106 167 229 233 240 247
Weak(ly) compactly generated      256—258
Weak(ly) compatible      103 108
Weak(ly) complete      113 see 11
Weak(ly) continuous      168 169 201 206
Weak(ly) metric, norm      104 109
Weak(ly) quotient      114
Weak(ly) sequential closure      113
Weak(ly) sequentially complete      132 see
Weak(ly) sup      106
Weak*      104 105 see
Weak*, bounded      137 see
Weak*, boundedly complete      138 139
Weak*, closed      see (Semi-) reflexive
Weak*, compact      130
Weak*, continuous      104 105
Weak*, convergence      35 189
Weak*, dual      104
Weak*, metrizable      106
Weak*, product, pointwise      104 106
Weak*, sequentially compact      230 231 257
Weak*, sequentially complete      139 160 203 see 30
Weaker      16
Webb, J.H.      193
Webs      200
Weston, J.D.      253
Whitley, R.J.      231
zeros      7 9 54 226 249 see
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте