Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Alexandroff P. — Elementary Concepts of Topology
Alexandroff P. — Elementary Concepts of Topology



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Elementary Concepts of Topology

Автор: Alexandroff P.

Аннотация:

Concise work presents topological concepts in clear, elementary fashion without sacrificing their profundity or exactness. Author proceeds from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups.


Язык: en

Рубрика: Математика/Геометрия и топология/Алгебраическая и дифференциальная топология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1961

Количество страниц: 57

Добавлена в каталог: 22.11.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\epsilon-$covering      35
$\epsilon-$transformation      47
Abstract geometrical complex      40
Alexander's duality theorem      53
Alexander's theorem on invariance of Betti groups      32
Algebraic complex      12 17 18
Algebraic complex with arbitrary coefficient domain      29 (n.25)
Algebraic complex, subdivision of      29
Algebraic subcomplex      18
Algebraic topology      12 17
Approximating complex      41
Approximation, simplicial      46
Barycenter      37
Barycentric covering      36
Barycentric star      38
Barycentric subdivision      37
Betti groups      26
Betti groups free      26
Betti groups full      26
Betti groups reduced      26
Betti groups, invariance theorem for      32
Betti number      26
Boundary      12
Boundary divisor      23
Bounding cycle      22
Brouwer dimension      36
Brouwer's theorem on invariance of dimension      31
Canonical displacement      43
Canonical displacement modified      43
Center (of barycentric star)      38
Class, homology      24
Closed manifold      7 10
Coefficient domain      29 (n.25)
Combinatorial topology      12
Complex oriented      14
Complex, abstract geometrical      40
Complex, algebraic      12 17 18
Complex, geometrical      6
Complex, n-dimensional      28
Component      26 (n.22)
Connected      7
Consistently oriented      18
Continuous mapping      9
Covering, barycentric      36
Covering, barycentric, $\epsilon-$      35
Curve, Jordan      2
Curve, simple closed      2
Curved polyhedron      7
Curved simplex      7
CYCLE      20
Cycle bounding      22
Dimension general      36
Dimension of frame      40
Dimension, Brouwer      36
Dimension, Brouwer's theorem on invariance of      31
Displacement, canonical      43
Displacement, modified canonical      43
Divisors, boundary      23
Domain vertex      40
Domain, coefficient      29 (n.25)
Duality theorem, Alexander's      53
Duality theorem, Poincare's      52
Equivalently oriented      18
Face (of simplex)      6
Face (of simplex) abstract      40
Fineness      46
Frame      40
Frame, dimension of      40
Frame, simplex spanned by      40
Free Betti group      26
Full Betti group      26
Geometrical complex      6
Geometrical complex abstract      40
Geometrical complex, algebraic subcomplex of      18
Geometrical complex, subdivision of      29
Group homology      see Betti groups
Group torsion      26 (n 21) 51
Group, Betti      26
Hausdorff axioms      9
Hausdorff space      9
Homeomorphic      21
Homeomorphism      21 (n 6)
Homologous      23
Homology class      24
Homology group      see Betti groups
Homology, strong      23
Homology, weak      23
Homomorphism, induced      46
Induced homomorphism      46
INTO      33 (n 31)
Invariance of Betti groups, Alexander's theorem on      32
Invariance of dimension, Brouwer's theorem on      31
Invariance theorem, topological      31
Invariant, topological      6—7 (n 6)
Jordan arc, simple      4
Jordan curve      2
Jordan curve theorem      2
Jordan curve theorem generalized      2 3
Leading vertex      37
Lebesgue number      42
Lebesgue's lemma      42
Linked      2
Manifold, closed      7 10
Manifold, product      10
Mapping, continuous      9
Mapping, simplicial      32—33
Mapping, topological      7
Modified canonical displacement      43
Modulo 2 theory      27
Modulo m theory      29 (n 25)
n-dimensional complex      28
Neighborhood      7 9
Nerve      39
Onentable      17 20
Onto      33 (n 31)
Order (of a covering)      35 (n 37)
Oriented complex      14
Oriented simplex      12 17
Oriented, consistently      18
Oriented, equivalently      18
Poincare's duality theorem      52
Polyhedron      6
Polyhedron, curved      7
Projection spectrum      41
Projective plane      8
Reduced Betti group      26
Simphcial approximation      46
Simphcial mapping      32—33
Simple closed curve      2
Simple Jordan arc      4
simplex      6
Simplex curved      7
Simplex oriented      12 17
Simplex spanned by frame      30
Simplex, face of      6
Space, Hausdorff      9
Space, Hausdorff, product      10
Space, Hausdorff, topological      8
Spectrum, projection      41
Star, barycentric      38
Strong homology      23
Subcomplex of algebraic complex      29
Subcomplex of geometric complex      29
Subcomplex, algebraic      18
Tiling theorem      1
Tiling theorem, proof of      35-36
Tnangulation      13
Topological invariance theorem      31
Topological invariant      6—7 (n 6)
Topological mapping      7 (n 6)
Topological space      8
Topology, algebraic      12 27
Topology, combinatorial      12
Torsion group      26 (n 21) 51
Transformation, $\epsilon-$      47
Vertex domain      40
Vertex leading      37
Vertex, abstract      40
Weak homology      13
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте