Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Oprea J. — Differential Geometry and Its Applications
Oprea J. — Differential Geometry and Its Applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Differential Geometry and Its Applications

Автор: Oprea J.

Аннотация:

Designed not just for the math major but for all readers of science, this book provides an introduction to the basics of the calculus of variations and optimal control theory as well as differential geometry. It then applies these essential ideas to understand various phenomena, such as soap film formation and particle motion on surfaces.


Язык: en

Рубрика: Математика/Геометрия и топология/Дифференциальная геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 387

Добавлена в каталог: 22.11.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Line of curvature and developable surfaces      98
Line of curvature, as a geodesic      154
Line of striction      64
Line, parameterized line      1
Line, shortest distance in R3      7—8
Line, symmetry      239
Linear transformation      74
Linking number      23
Manifold      313
Maple      38 85 119 183 249 300
Mayer field      270
Mean curvature      87 325 334
Mean curvature and Euler's formula      90
Mean curvature and shape operator      88—89
Mean curvature in Maple      121
Mean curvature, as least surface area with fixed volume      141 293—294
Mean curvature, constant      115—116 139
Mean curvature, formula      89 91
Mean curvature, of Enneper's surface      94
Mean curvature, surfaces of Delaunay      115—116
Mean curvature, vector field      325 334
Mercator projection      183
Meridians      99
Meridians, as geodesies      152—153
Meromorphic      226
Metric (EFG)      64 91 168
Metric (EFG), in Maple      120
Metric (EFG), second fundamental form (Imn)      91 324
Metric (EFG), second fundamental form (Imn), in Maple      121
Minimal surface      90 128
Minimal surface adjoint      231
Minimal surface and compactness      112
Minimal surface harmonic      131
Minimal surface ruled      132
Minimal surface, as solution to Bjorling's problem      242
Minimal surface, Catalan's      134—135 228
Minimal surface, catenoid      59—60 114 228
Minimal surface, Enneper's      61 85 135
Minimal surface, equation of      130
Minimal surface, equation of, as Euler — Lagrange equation      265
Minimal surface, Henneberg's      134—135 229 231 241
Minimal surface, Henneberg's, as solution to Bjorling's problem      241
Minimal surface, Scherk's fifth      134
Minimal surface, Scherk's first      130
Minimal surface, Scherk's first, symmetry of      239—240
Minimal surface, second variation of      244
Minimal surface, versus area-minimizing      137—138
Moebius strip      67—68
Moebius strip in Henneberg's surface      242
Monge patch      56
Myers' Theorem      342
Newton's Aerodynamical Problem      299
Newton's Aerodynamical Problem, Newton's curve      3
Nodary      118
Nonorientable surface      67
Normal coordinates      331
Normal curvature      79 151
Normal to a surface U      66—70
Normal vector fields      317
Orientable      68
Orientable manifold      315—316
Orientable surface      68
Osculating circle      28
Parallel postulate      188
Parallel surface      92
Parallel transport      195 329
Parallel vector field      194 328
Parallel vector field and Foucault's pendulum      199
Parallel vector field, existence of      194
Parallels      99
Parameter curves      53
Patch (parameterization, chart)      54 312
Path connected      55
Plateau's problem      136
Pontryagin maximum principle      297
Pontryagin maximum principle in Maple      308—311
potential energy      265 284
Principal curvatures      81 90
Principal curvatures and Hilbert's Lemma      114
Principal curvatures, as eigenvalues of shape operator      87
Principal curvatures, as eigenvalues of shape operator of surface of revolution      101
Principal normal N      19
Pseudosphere      102—103
Pursuit curve      14
REcreate      48
Recreate3dview      49—50
Regular curve      16
Regular mapping      54
Reparameterization of curve      16 17
Ricci curvature      340
Riemann curvature      335—336
Ruchert's Theorem      248
Ruled surface      62
Ruled surface in Maple      85
Ruled surface minimal      132
Ruled surface, Gauss curvature of      97
Saddle surface      62 97
Scalar curvature      340
Schwarz reflection principle      239
Schwarz's inequality      6
Schwarz's theorem      245
Second fundamental form      91 324
Second fundamental form B(V,Z)      324
Second fundamental form lmn      91—92
Second variation      244
Sectional curvature      337
Shape operator      71 322
Shape operator and Gauss curvature      87—89
Shape operator and mean curvature      87—89
Shape operator of cylinder      72
Shape operator of plane      72
Shape operator of sphere      72 323
Shape operator of torus      72
Shape operator, as symmetric linear transformation      76 323
Shape operator, eigenvalues of      76
Slope function      268
Sphere      57—58 67
Sphere, Gauss curvature of      91 95 108 357
Sphere, shape operator of      72 323
Spherical coordinates      57—58
Spiral of Cornu      38 281—282
Stereographic projection      170 233 313
Stereographic projection and area minimization      246
Striction, line of      64
Structure equation first      354
Structure equation second      355
Sturm — Liouville Theorem      217
surface      54
Surface area      128—129 189—190 262
Surface Catalan's      134
Surface catenoid      59—60 114
Surface cone      62 97—98
Surface cone lassoing      179
Surface cone, unrolling as Isometry      179
Surface cylinder      62 82 97—98
Surface cylinder unrolling      180
Surface Enneper's      61 93 134 229
Surface helicoids      60 97 178 182 228
Surface Henneberg's      134—135 229 231 241
Surface Henneberg's, with embedded Mobius strip      242
Surface of Delaunay      115 293
Surface of revolution      58 99
Surface of revolution, meridians and parallels of      99
Surface of revolution, principal curvatures      101
Surface, hyperbolic plane      170
Surface, hyperboloid of one sheet      63 97
Surface, hyperboloid of two sheets      95—96
Surface, Moebius strip      67—68 242
Surface, of revolution, Gauss curvature of      100
Surface, of revolution, least area      264
Surface, of revolution, minimal      114
Surface, Poincare plane      169 201
Surface, Richmond's      229
Surface, Scherk's fifth      134
Surface, Scherk's first      130 229
Surface, Scherk's first, symmetry of      239—240
Surface, sphere      57—58 67 108
Surface, stereographic sphere      170 176
Surface, tension      125—128 141
Surface, torus      60 100—101 171
Surface, unit normal (U) of      70 120
Suspension bridge      13
Symmetric matrix (transformation)      75 323
Symmetry line      239
Symmetry of Riemann curvature      338
Symmetry plane      239
Tangent developable      85 98
Tangent for nonunit speed curves $\bar{T}$      28
Tangent for unit speed curves T      18
Tangent plane      65
Tangent space      313
Tangent vector      3 53 65
Theorem Egregium      105
Torsion $\tau$      21
Torsion $\tau$ of a nonunit speed curve      28—29
Torsion $\tau$ of a nonunit speed curve in Maple      41
Torsion $\tau$, geodesic      195
Torsion $\tau$, total torsion      24 80
Torsion $\tau$, total torsion, of spherical curve      80
Torus      60
Torus, Gauss curvature of      100—101
Torus, shape operator of      72
Transition map      313
Trick      18
Twist      24
Umbilic      84 109
Umbilic on minimal surface      231
Undulary      118
Unduloid      118
Upper half-space      343
Vector field      70 193 317
Vector field and Bjorling's problem      238
Vector field parallel      194 328
Vector field parallel and Foucault's pendulum      199
Vector field, Lie bracket of      319
Velocity vector of curve      2
Viviani's curve      27 50—51
Weierstrass E-function      268
Weierstrass E-function for arclength integral      273—274
Weierstrass E-function, Weierstrass condition      272
Weierstrass — Enneper Representations      226
Weierstrass — Enneper Representations and area minimization      242—249
Weierstrass — Enneper Representations in Maple      249—250
Weingarten map      71
White's formula      24
Witch of Agnesi      12 43
Witch of Agnesi, whirling witch of Agnesi      163 186
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте