Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Guo J., Wall M. — Latent class regression on latent factors
Guo J., Wall M. — Latent class regression on latent factors

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Latent class regression on latent factors

Авторы: Guo J., Wall M.

Аннотация:

In the research of public health, psychology, and social sciences, many research questions investigate the relationship between a categorical outcome variable and continuous predictor variables. The focus of this paper is to develop a model to build this relationship when both the categorical outcome and the predictor variables are latent (i.e. not observable directly). This model extends the latent class regression model so that it can include regression on latent predictors. Maximum likelihood estimation is used and two numerical methods for performing it are described: the Monte Carlo expectation and maximization algorithm and Gaussian quadrature followed by quasi-Newton algorithm. A simulation study is carried out to examine the behavior of the model under different scenarios. A data example involving adolescent health is used for demonstration where the latent classes of eating disorders risk are predicted by the latent factor body satisfaction.


Язык: en

Рубрика: Математика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2006

Количество страниц: 19

Добавлена в каталог: 28.11.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте