Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Beauville A. — Complex Algebraic Surfaces
Beauville A. — Complex Algebraic Surfaces



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Complex Algebraic Surfaces

Автор: Beauville A.

Аннотация:

Developed over more than a century, and still an active area of research today, the classification of algebraic surfaces is an intricate and fascinating branch of mathematics. In this book Professor Beauville gives a lucid and concise account of the subject, following the strategy of F. Enriques, but expressed simply in the language of modern topology and sheaf theory, so as to be accessible to any budding geometer. This volume is self contained and the exercises succeed both in giving the flavour of the extraordinary wealth of examples in the classical subject, and in equipping the reader with most of the techniques needed for research.


Язык: en

Рубрика: Математика/Алгебра/Алгебраическая геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: second edition

Год издания: 1996

Количество страниц: 132

Добавлена в каталог: 20.11.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$F_n$      III.15 IV.1 V.10; Exercises Exercises 2
Abelian surface      VIII.2
Adjunction formula      I.15
Adjunction terminates      V.8—9 VI.18
Albanese fibration      V.15
Albanese morphism      V.13
Albanese variety      V.13
Automorphisms of elliptic curves      V.12 VI.16
Bezout's theorem      1.9 a)
Bielliptic surface      VI.19—20
Birational automorphisms of minimal non-ruled surfaces      V.19
Birational automorphisms of ruled surfaces      III Exercise
Birational equivalence      Chap. II
Birational morphisms (structure of)      II.11 II.19
Bitangents to a plane quartic      IV Exercise
Blow-up      II.1
Bordiga surface      IV Exercise
Canonical divisor      I.13
Castelnuovo's contractibility criterion      II.17
Castelnuovo's theorem (rationality criterion)      V.I
Castelnuovo—De Franchis lemma      X.9
Complete intersection      VII.5
Complete intersection of two quadrics      IV.16
Complex torus      V.11
Cubic ruled surface in $P^4$      IV.7
Cubic surface      IV.13
Cubic surface contains 27 lines      IV.12; IV Exercises 14
Cubic surface with a double line      IV.8; IV Exercise
Del Pezzo surface      IV.9; V Exercises 2
Donaldson polynomial      Appendix C
Double-six      IV Exercise
Elementary transformation      III Exercises
Eliminateon of indeterminacy      II.7
Elliptic surface      Chap. IX
Enriques surfaces      VIII.2 VIII.17—20; Exercises
Enriques' theorem (characterization of ruled surfaces)      VI.17
Exceptional curve      II.17; II.19
Exceptional curve of the second kind      II Exercise
Genus (geometric, arithmetic, pluri-)      III.19 III.23
Genus formula      I.15
Geometrically ruled surface      III.3 III.7 III.18
Godeaux surface      X.3.4
Hopf surfaces      Appendix B
Hyperelliptic surface      VI.19
Iitaka's conjecture      Appendix C
Infinitely near points      II Exercise
Inoue surfaces      Appendix B
Intersection multiplicity      1.2
Intersection number      I.3
Irregularity      III.19—20
K3 surface      VIII.2 VIII.8—16 Appendix
Kodaira dimension      Chap. VIII
Kodaira surfaces      Appendix B
Kummer surface      VIII.10; VIII Exercises
Linear system      II.5
Lueroth's theorem      V.4
Minimal model      II.15
Minimal model of non-ruled surfaces (unicity)      V.19
Minimal model of rational surface      V.10
Minimal model of ruled surface      III.10
Moduli of Enriques surfaces      VIII Exercise
Moduli of K3 surfaces      VIII. 16; VIII.21
Nef divisor      Appendix C
Neron — Severi group      I.10
Noether — Enriques theorem (on ruled surfaces)      III.4
Noether's formula      I.14; I.18
Noether's inequality      X Exercise
Numerical invariants      III.19—20
Numerical invariants of ruled surfaces      III.21
Numerical invariants of surfaces with k = 0      VIII.2
Picard group      I.I I.10
Product of curves      VII.4
Projection from $p\inP^n$      II.14.1 IV.4—5
Projections of the Veronese surface      IV.6—8
Projective bundles $P_C(E)$      III.2(b) III.15—18
Quadratic transformation      II.14.3
Quartic symmetroid      VIII Exercise
Quartics in $P^3$ with double curves      III Exercise Exercises 15 18
Quasi-elliptic surface      Appendix A
Rational surface      III.1; Chap. IV
Rational variety      V.3
Rationality theorem      Appendix C
Reye congruence      VIII.19
Riemann — Roch for rank 2 vector bundles      III.12
Riemann — Roch theorem      I.12
Ruled surface      Chap. III
Ruled surface, criterion for      VI.18
Seiberg — Witten invariants      Appendix C
Serre duality      I.11
Stein factorization      V.17
Steiner surface      IV.6; IV Exercises
Strict transform (of a curve)      II.1
Surfacees of general type      Chap. X
Surfaces of class $VII_0$      Appendix B
Surfaces of general type with $p_g = 0$      X.3(4); X Exercises
Surfaces with $p_g = 0, q \geqslant 1$      V.18 VI.13
Unirational variety      V.3—5
Universal property of blowing-up      II.8
Useful remark      III.5
van de Ven conjecture      Appendix C
Vector bundles over a curve      III.15
Veronese surface      IV.6; IV Exercise
Weddle surface      VIII Exercise
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте