Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Adams J.F. — Infinite Loop Spaces - Hermann Weyl Lectures the Institute for Advanced Study, Vol. 90
Adams J.F. — Infinite Loop Spaces - Hermann Weyl Lectures the Institute for Advanced Study, Vol. 90



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Infinite Loop Spaces - Hermann Weyl Lectures the Institute for Advanced Study, Vol. 90

Àâòîð: Adams J.F.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1978

Êîëè÷åñòâî ñòðàíèö: 228

Äîáàâëåíà â êàòàëîã: 28.10.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$A_{n}$-spaces      33—36
$A_{\infty}$ spaces      30—35
$BO_{\bigoplus}$, $BO_{\bigotimes}$      28 144
$bso_{\bigoplus}$, $bso_{\bigotimes}$, $BSO_{\bigoplus}$, $BSO_{\bigotimes}$      28 145—146
$BU_{\bigoplus}$, $BU_{\bigotimes}$      28 146
$B^{n}$, $B^{\infty}$      45 47 50
$E_{n}$ space      44 48
$E_{\infty}$ ring space      72
$E_{\infty}$ ring spectrum      73
$E_{\infty}$ space      46 69
$H_{\infty}$ring spectrum      73
$K_{F}(X)$      26 132 134 136—137 192
$K_{PL}(X)$, $K_{Top}(X)$      26 132 192
$K_{\ast}$-topology      186
$\Delta$      57
$\Delta$-space      63
$\gamma$      63
$\Gamma$-space      64
$\omega$      3
$\Omega$-spectrum      15
$\Omega^{n}$      44—45 48—49
$\Omega^{\infty}$      22—26 47 49 142—43 146—147 149—155 158 184 186—187
$\pi_{\ast}$-topology      185—186
$\sum$      6
$\sum^{\infty}$      11 15 17 20 22 100—101 103—107 124—127
$\textbf{KO}$, KO, $K_{O}(X)$      132 134—137 145 154 192
$\textbf{K}$, $\textbf{ku}$      152
$\textbf{MO}$, $\textbf{MSO}$      10—11 19
$\textbf{MU}$      71
Adams conjecture      132—141
Adams conjecture, infinite-loop versions of      195—196
Adams, J.F. and Priddy, S.B. (their theorem)      145—148
Algebra-functor      53 55—56 59
Algebraic K-theory      25 28 70 86—87 91 140 196
Approximation theorem      49 56
Araki      see “Kudo”
Associativity conditions      30—34
Axioms for machines      196
B (classifying space)      34—36 50 61 64—65 67—68
Bar construction      51—59
Becker, J.C. and Gottlieb, D.H. (on Adams conjecture)      140—141
Becker, J.C. and Gottlieb, D.H. (on transfer)      106—108
BF      25—26 136 192—193 195 see
BO      16 19 28 132 141 192
Boardman, J.M. and Vogt, R.M.      25 37 46 47 50—51 60
Boardman, J.M., (his category)      11
Boardman, J.M., (on transfer)      100 see
Bounded below      21
BPL      25—26 192
bso      145
bsu, BSU      154
BTop      25—26 192
BU      16 19 28
Classifying spaces      see entries from “B” to “BU”
Coefficient groups      20—21
Coefficients in generalized homology theories and spectra      74—76 153
Coherence conditions      67
Coker, J.      193
Completion      146 153
Connective      21
Connective tissue      60
Coordinate-free spectra      72—73
Cup-products      27—28 70—71
CW-spectra      11—12
Discrete models      143 192
Double coset formulae      128—131
Double loop-space      13 36
Dyer, E. and Lashof, R.K.      37
Dyer, E. and Lashof, R.K., their operations      24 36 144—145
E-space      46
Eilenberg — MacLane spaces      15—16
Eilenberg — MacLane spectra      19
f      25 see
Filtration topology      183 186
Friedlander, E.M.      195
Generalized cohomology theories      16—17 20
Generalized homology theories      20
Geometrical realization      58—59 61 68
Gottlieb      see “Becker”
Group completion theorem      90
Grouplike (H-spaces)      88
H-space      12—13
H-space structure      33 see
Higher homotopies      34 36 46 65 72 123
Homotopy groups, (of spaces)      5 7
Homotopy groups, (of spectra)      20—21
Homotopy-invariant structures      50—51
Im J      193
J-homomorphism      133 137 193
James, I.M. (his model)      8 49
jokes      vii 66 200 204
K-theory      16 19 26 27 28 98—99 132—137 142—191
Kahn, D.S. and Priddy, S.B., (on transfer)      104—105 119
Kahn, D.S. and Priddy, S.B., (their theorem)      24 105
Kan, D.M. and Thurston, W.P.      84
Kudo, T. and Araki, S.      24 36 37
Lashof      see “Dyer”
Limit topology      184
Little cubes operad      46 119
Little n-cubes operad      42—44 119
localization      74—82 135—136 148 151 153
Loop-spaces      3 12
Machinery      30 36—37 196
Madsen, I., Snaith, V.P. and Tornehave, J.      194
Madsen, I., Snaith, V.P. and Tornehave, J., their theorem      148—191
Madsen, I., Snaith, V.P. and Tornehave, J., their theorem, global version      149—151
Madsen, I., Snaith, V.P. and Tornehave, J., their theorem, local version      153—155
May, J.P.      26 37 41 46 50—51 56 59 155 194 196
Module-functor      55—56 59
Monad      53 56 59
Monoidal category      66 67
Moore, J.C, (his loops)      31
Moore, J.C,(his space)      74—75
Morse, M.      3—4
Multiplicative structures      27—28 70—73
Nerve (of a category)      68
Operad      41—44 56 59 see “Little
Orientations      26 194
p-adic topology      184
Parameter spaces      33 37 41 60
Permutative category      67 88 143 196
PL      25—26 192
Plus construction      84—88 91 105 140
Pontryagin product      13
Pre theorems      45
Pretransfer      119
Priddy, S.B., (his theorem on $B\Sigma_{\infty}$)      83—84 see “Kahn”
Products      see “Cup—products” “Pontryagin “Multiplicative
PROP      37—42 51
Quillen, D.G.      82—83 84—87 91 138—140
Realization      see “Geometrical realization”
Recognition principle      49
Representing spectrum      17—19 21
Ring-object, ring-space, ring-spectrum      71—73
Segal, G.B.      27
Segal, G.B. and his machine      59—65 196
Series topology      185
Serre, J.-P.      4-5 74
Seymour, R.F.      195
Simplicial sets and spaces      57—58
Smash product, (of spaces)      20
Smash product, (of spectra)      71 73 127
Snaith      see “Madsen”
Spanier — Whitehead duality      9—10
Special $\Delta$-spaces      63
Special $\Gamma$-spaces      64
Spectrum, spectra      11 see “Coordinate-free “Eilenberg “Representing “Ring-spectrum” “Sphere “Suspension “Thom
Sphere spectrum      19 28
Spherical fibrations      25 133—134 136 195 see
Stable homotopy groups      17
Stable homotopy theory      7—12
Stasheff, J.D.      33 35 37 41
Strict (monoidal category)      66 69
Structure maps      31—34 37 108—123
Sugawara, M.      33 35
Sullivan, D.      74 78 137—138 147 194
Suspension      6;
Suspension spectrum      11 see
Suspension-theory      8
Symmetric (monoidal category)      67 see
T-functor      55
T-object      54
Thom complexes      11
Thom spectra      11 19 71
Thurston      see “Kan”
Top      25-26 192
Topological category      70
Tornehave      see “Madsen”
TRANSFER      96—131 145 172—183
Trees      51
Triple      53
Uniqueness of machines      196
Universal coefficient theorem      76 167—168
Vogt      see “Boardman”
Weak equivalence      14
Whitehead, G.W.      19 165
Whitney sum      26
Zabrodsky mixing      79
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå