| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory |  
                    | 
                            
                                |  
 
 
 Обсудите книгу на
 
 
 
 Нашли опечатку?
 Выделите ее мышкой и нажмите Ctrl+Enter
 
 
 | Название:  Partial Differential Equations I: Foundations of the Classical Theory 
 Авторы:  Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed)
 
 Язык:
  
 Рубрика: Математика/
 
 Статус предметного указателя: Готов указатель с номерами страниц
 
 ed2k:
 
 Год издания: 1991
 
 Количество страниц: 259
 
 Добавлена в каталог: 13.09.2008
 
 Операции: Положить на полку |
	 
	Скопировать ссылку для форума | Скопировать ID
 |  |  
			        |  |  
                    | Предметный указатель |  
                    | | Fredholm property of solutions of elliptic boundary-value problems      109 Fredholm, E.I.      98 104 109 131
 Friedman, A.      104 171 176 242 244
 Friedrichs' inequality      124
 Friedrichs, K.O.      127
 Front, wave      145
 Function(s), Airy      236—237
 Function(s), Bessel's, of first kind      229
 Function(s), Bessel's, of imaginary argument      232
 Function(s), convolution of      63
 Function(s), cylindrical      226
 Function(s), cylindrical, of second kind      231
 Function(s), delta-, Dirac      47
 Function(s), delta-, of a surface      64
 Function(s), delta-shaped family      51
 Function(s), eigen-      126
 Function(s), eigen-, Bloch      218
 Function(s), eigen-, continuous spectrum      194
 Function(s), elliptic cylinder      240
 Function(s), generalized (distribution)      47
 Function(s), generalized (distribution), homogeneous      59
 Function(s), generalized (distribution), spherically symmetric      70
 Function(s), generalized (distribution), tempered      49
 Function(s), generating, for the Hermite polynomials      239
 Function(s), generating, for the Laguerre polynomials      239
 Function(s), generating, for the Legendre polynomials      223
 Function(s), Green's, for a Sturm — Liouville problem      202
 Function(s), Green's, for the Dirichlet problem      88
 Function(s), Hankel, of first kind      231
 Function(s), Hankel, of second kind      231
 Function(s), harmonic      83
 Function(s), Heaviside      56
 Function(s), hypergeometric      241
 Function(s), hypergeometric, confluent      240
 Function(s), Kummer      240—241
 Function(s), Legendre, associated      221
 Function(s), Macdonald      233
 Function(s), Mathieu      240
 Function(s), Neumann      231
 Function(s), parabolic cylinder      240
 Function(s), source, for a Sturm — Liouville problem      202
 Function(s), source, for the Dirichlet problem      88
 Function(s), special      220—241
 Function(s), support of      48
 Function(s), test      48
 Galerkin, B.G.      125
 Garding's theorem      137
 Garding, L.      137 150 178 242—244
 Gauss' hypergeometric series      241
 Gauss, K.F.      241
 Gel'fand, I.M.      47 51 55 58 61 62 65 164 172 220 242
 Generalized function (distribution), convolution of      63
 Generalized function (distribution), derivative of      55
 Generalized function (distribution), homogeneous      59
 Generalized function (distribution), regularization of      60
 Generalized function (distribution), spherically symmetric      70
 Generalized function (distribution), support of      53
 Generalized function (distribution), tempered      49
 Generalized function (distribution), tempered, Fourier transform of      65
 Generalized solution of a differential equation      123
 Generating function for Hermite polynomials      239
 Generating function for Laguerre polynomials      239
 Generating function for Legendre polynomials      223
 Geometric-optical ray      191
 Gindikin, S.G.      25
 Glazman, I.M.      216 243 244
 Gokhberg, I.Ts.      187 244
 Gordon, W.      18
 Green's formula      84
 Green's formula, second      84
 Green's function for a Sturm — Liouville problem      202
 Green's function for the Dirichlet problem      88
 Green, G.      70 84 88—90 92 161 202 203
 Hadamard's example      21
 Hadamard's Theorem      178
 Hadamard, J.      21 24 138 177—179
 Hamilton, W.R.      45 46 157
 Hamilton-Jacobi equation      45
 Hamiltonian system      191
 Hankel functions of first kind      231
 Hankel functions of second kind      231
 Hankel transform      234
 Hankel, H.      188 231 232 234
 Harmonic functions      83
 Harmonic spherical      220
 Harnack's inequality      91
 Harnack's theorem      88
 Harnack, A.      87 88 91
 Hartman, P.      41 150 231 244
 Heat equation      10 37
 Heat operator, fundamental solution for      72
 Heat potential      76
 Heaviside function      56
 Heaviside, O.      56 66 71 155
 Helmholtz' equation      15
 Helmholtz, G.      15 17 184 233
 Herglotz — Petrovskij formulas      144
 Herglotz, G.      144 145 150
 Hermite polynomials      239
 Hermite, Ch.      18 239
 Hilbert transform      65
 Hilbert, D.      65 104 113 126 181 202 204 243 244
 Hill operator      218
 Hill, G.W.      218
 Hille — Yosida theorem      181
 Hille, E.      181
 Hoelder spaces      99
 Hoelder spaces, estimates in      167
 Hoelder, O.      110 120 131 162 173
 Holmgren's theorem      35—36
 Holmgren, A.      25 35
 Hooke, R.      9 10
 Hormander, L.      20 24 33 47 51 53 55 57—59 62 65 66 68 69 73 77 79 83 105 122 170 191 236 238 242 245
 Hugoniot, H.      135
 Huyghens' principle      145
 Huyghens, Ch.      145
 Hyperbolic equation at a point      38
 Hyperbolic equation in a region      38
 Hyperbolic equation in the direction of a vector      43
 Hyperbolic equation, discontinuous solution of      153—157
 Hyperbolic operator      38
 Hyperbolic operator at a point      38
 Hyperbolic operator in a region      38
 Hyperbolic operator in the direction of a vector      43
 Hyperbolic polynomial      26
 Hyperbolic symmetric system      44
 Hypergeometric equation      241
 Hypergeometric functions      241
 Hypergeometric functions, confluent      240
 Hypergeometric series of Gauss      241
 Hypoelliptic operator      78
 Il'in, A.M.      165 167 168 171 173 176 242 245
 Il'in, V.P.      113 245
 Imbedding theorems      119—122
 Index of a boundary-value problem      110
 Index of an operator      110
 Index of parabolicity of a system      172
 Index, defect      212
 Inductive limit topology      50
 Inequalities, energy      159
 Inequality, Friedrichs'      123
 Inequality, Harnack's      91
 Infinitesimal generator of a semigroup      180
 Initial condition      11
 Inner capacity      101
 Integral estimates      166
 Integral, Dirichlet      123
 Integral, singular      65
 Interior a priori estimate      87
 Interior Dirichlet problem      87
 
 | Jacobi, K.G.J.      45 46 Jahnke, E.      243 245
 John, F.      38 113 122 132 134 144 147 177 243 245
 Jump theorems for double-layer potential      95
 Jump theorems for single-layer potential      95
 Kalashnikov, A.S.      132 165 167 168 171 173 177 176 242 245
 Kato's theorem      182
 Kato, T.      182 188
 Kellogg's theorem      104
 Kellogg, O.D.      104
 Kelvin transform      92
 Kelvin, W.      92 93 98
 Kernel of an operator, in the sense of Schwartz      68
 Kernel, Dirichlet      51
 Kernel, Fejer      51
 Kernel, generalized      68
 Kirchhoff's formulas      142
 Kirchhoff, G.R.      142 144
 Klein — Gordon — Fock equation      18
 Klein, F.      241
 Klein, O.      18
 Komatsu, H.      245
 Korteweg, D.J.      207
 Kostyuchenko, A.G.      214 217 144 243 245
 Kovalevskaya type      28—29
 Kovalevskaya, S.V.      28—33 36
 Kreiss' example      178
 Kreiss, H.O.      159 245
 Krejn, M.G.      187
 Krejn, S.G.      183 184 242 245
 Kummer function      240—241
 Kummer, E.E.      240 241
 Lacuna      150 218
 Lacuna, strong      150
 Ladyzhenskaya, O.A.      99 104 113 122 132 134 242 243 245
 Laguerre polynomials      239
 Laguerre, E.N.      239 240
 Landau, L.D.      16 242 245
 Landis, E.M.      85 100 246
 Landkof, N.S.      85 100 102 208 209 242 245
 Laplace transform      133 179
 Laplace — Beltrami operator      15
 Laplace's equation      14 37 220
 Laplace's formulas      226
 Laplace, P.S.      14 21 22 24 37 88 99 223
 Laplacian      10
 Laplacian, fundamental solution for      70 83
 Laurent, P.A.      82
 Lax, P.      140 184 199 244 245
 Lax-Phillips theorem      184
 Lebesgue, H.      47 54
 Legendre functions, associated      221
 Legendre polynomials      144
 Legendre polynomials of first kind      238
 Legendre polynomials of second kind      238
 Legendre's equation      225
 Legendre, A.M      144 221 223 225 241
 Leibniz, G.W.      5 56 71
 Lemma, normal derivative      86
 Levinson, N.      207 243
 Levitan, B.M.      206 220 243 245
 Lifshits, E.M.      16 243 245
 Light cone      73
 Limiting absorption      189
 Limiting amplitude      189
 Linear differential operator      7
 Linear partial differential equation      7
 Lions, J.L.      105 113 122 242 243 245
 Liouville's theorem      80 91
 Liouville, J.      77 80 92 201 202 203 205
 Local energy      191
 Local operator      69
 Loesch, F.      243 245
 Lopatinskij, Ya. B.      105
 Lorentz, H.A.      18
 Macdonald function      233
 Macdonald, H.M.      233
 Magenes, E.      105 113 122 242 243 245
 Majorants, method of      28
 Manakov, S.B.      207 218
 Marchenko, V.A.      209 215 216 243 246
 Mathieu E.L.      240
 Mathieu functions      240
 Mathieu's equation      240
 Matrix, scattering      198
 Maximal operator      212
 Maximum principle      24
 Maximum principle for a general elliptic equation      104
 Maximum principle for a parabolic equation      164
 Maximum Principle for harmonic functions      87
 Maximum principle, strong      165
 Maxwell's equations      15—16
 Maxwell, J.C.      15 16 18 158
 Maz'ya, V.G.      100 113 243 246
 Mean-value theorem for harmonic functions      85
 Measure, Radon      54
 Mehler      226
 Mehler's formulas      226
 Method, balayage      102
 Method, Cook's      196
 Method, descent      142
 Method, energy      135
 Method, energy estimates      138
 Method, Fourier transform      142
 Method, Fourier's      135 163
 Method, majorants      28
 Method, plane wave      145
 Method, separation of variables      135 163
 Mikhailov, V.P.      87 92 113 122 132 242 246
 Mikhlin, S.G.      87 94 97 113 122 223 242 243 246
 Miller, W.      243 246
 Minimal operator      212
 Miranda, M.      99 104 113 242 246
 mixed boundary-value problem      159—161
 Mixed parabolic problem      132
 Mizohata's theorem      138
 Mizohata, S.      122 134 138 141 178 179 246
 Molchanov's theorem      214
 Molchanov, A.M.      214 217
 Monodromy operator      218
 Morawetz, C.S.      192
 Multiplier, Floquet      219
 Najmark, M.A.      211 214 220 243 246
 Nash's theorem      167—168
 Nash, J.      167
 Neumann condition      14—15
 Neumann functions      231
 Neumann problem      87
 Neumann problem, exterior      93
 Neumann problem, generalized statement of      128
 Neumann, K.G.      14 83 87 93 98 110 128 160 189 231
 Newton, I.      5 9 96
 Newton, R.G.      199 243 246
 Newtonian potential      63 94
 Nikol'skij, S.M.      113 243 246
 Nirenberg, L.      43 105 139 242 244 246
 Non-trapping condition      191
 Noncharacteristic plane      26
 Nonstrictly hyperbolic operator      26
 Nonstrictly hyperbolic polynomial      26
 Normal derivative lemma      86
 Novikov, S.P      207 218
 Numbers, defect      212
 Oblique derivative problem      109
 Olejnik, O.A.      132 165 167 168 171 173 176 177 242 245
 Operator, Cauchy — Riemann      20
 Operator, closed      211
 Operator, D'Alembertian      18
 Operator, elliptic      42
 Operator, elliptic, at a point      42
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |