Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Nayfeh A.H. — Perturbation Methods
Nayfeh A.H. — Perturbation Methods



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Perturbation Methods

Àâòîð: Nayfeh A.H.

Àííîòàöèÿ:

The Method of Perturbations (asymptotic expansions) is an approximations technique for solving complicated problems in mathematics, engineering and physics involving nonlinear equations, variable coefficients and nonlinear boundary conditions. The purpose of this book is to present in a unified way an account of some of these techniques, pointing out their similarities, differences, and advantages, as well as their limitations.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1973

Êîëè÷åñòâî ñòðàíèö: 425

Äîáàâëåíà â êàòàëîã: 14.05.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Acoustic      77 78
Aerodynamic      110
Airfoil theory      98 99 235 303;
Airy's equation      312 336
Airy's functions      49 336 378
Algebraic equation      2 57 74 95 327
Algorithm      168 171 199 209
Algorithm for canonical systems      212—214
Algorithm, generalized      202—206
Algorithm, simplified      206—208
Anomaly      79
Aperiodic motion      189
Astrophysics      235
Asymptotic expansion      23 78
Asymptotic expansion of Airy's functions      337
Asymptotic expansion of Bessel's function      16
Asymptotic expansion, definition of      12
Asymptotic expansion, divergent      16
Asymptotic expansion, elementary operation on      18—19
Asymptotic expansion, uniform      17—19
Asymptotic expansion, uniqueness of      14 see also Asymptotic series
Asymptotic matching principle      see Matching
Asymptotic partitioning      327—331
Asymptotic sequence      12 14 16 18 19
Asymptotic sequence, factorial      12
Asymptotic sequence, fractional powers in      136 137
Asymptotic sequence, logarithms in      137 144
Asymptotic series      10—12
Asymptotic series, definition of      11
Asymptotic series, versus convergent series      15—16 see Asymptotic expansion
Attenuation      46 78
Averaging, generalized method of      168—171 191 211 223—225 231
Averaging, Krylov — Bogolinbov — Mitropolski, method of      174—179 183 194 211 212 223 224 246 248
Averaging, method of      159—227
Averaging, Struble's method of      171—174 176 183 194 223
Averaging, using, canonical variables      179—189
Averaging, using, Lagrangian      216—222
Averaging, using, Lie series and transforms      200—216
Averaging, van der Pol's method of      164—165 see also Smoothing
Averaging, von Zeipel transformation      189—200
Beam, vibration of      105 106 155 226 306
Bearing, slider      54 125—128
Bellman, equation of      22
Benard problem      77
Bending of, shells and tubes      54 353;
Benney's technique      38—42
Bernoulli's equation      83
Bessel functions      1 5 6 15 312 315 383
Bessel functions, asymptotic expansion of      16 312—314 329—331
Bessel functions, integral representation of      16 314
Bessel functions, zeros of      21
Bethe — Salpeter equation      372
Blunt body problem      99
Boltzmann's equation      236
Born approximation      362
Born expansion      308 361—367 373
Born expansion, renormalization of      367—372
Boundary conditions, loss of      31 34 37 38 54 111 114 122
Boundary conditions, transfer of      27
Boundary layer      18 23 79 111 112 147 233
Boundary layer, location of      114—116 122
Boundary layer, Prandtl      34
Boundary layer, problem with two, s      128—133
Boundary layer, stability of      353
Branch point      82
Bretherton's equation, exercises involving      227 306
Bretherton's equation, treated, by method of multiple scales      266—269 298—300
Bretherton's equation, treated, by variational approach      217—221
Bretherton's equation, wave-wave interaction for      219—221 266—269
Brownian motion      236
Buckling      233
Canonical equations      180 199
Canonical, averaging, variables      179—189
Canonical, Jordan, form      327
Canonical, mixed, variables      199
Canonical, system      190 201
Canonical, transformation      181 187 191
Canonical, variables      181 183 184 195 202 216 224
Caustic      234 375—380
Change      111 113
Change of characteristics      89 see also Sharp change; Type change of
Characteristic exponent      58 62 66
Characteristic, parameters      89 94
Characteristic, wave speeds      91
Characteristics, expansion in terms of      57 86—94 303
Characteristics, method of      374
Circuit, electronic      see van der Pol oscillator
Cluster expansions      363
Compatability relationship      217 222
Composite expansion      114 144 384 385
Composite expansion for earth-moon-spaceship problem      139
Composite expansion for equation with variable coefficients      125
Composite expansion for simple example      121—122
Composite expansion for slider bearing      128
Composite expansion for thermoelastic waves      136
Composite expansion for unsymmetrical bending of plates      133
Composite expansion, construction of      121
Composite expansions, applied to turning point problems      348—350
Composite expansions, method of      144—154 317 318
Composite solution      113
Conservation form of equations      226
Coordinate, optimal      50—51
Coordinate, parabolic      79
Coordinate, perturbations      1 4—7 21 309—314 379
Coordinate, role of, systems      23 49—52 54 380
Correlation      363
Cosmological expansion      233
Cycle, limit      35
Cylinder, a solid, expanding      83—86
Cylinder, elliptic      346
Cylindrical, functions      358 378 380
Cylindrical, jet      99
Degenerate      72 74
Derivative—expansion procedure      302
Derivative—expansion procedure, applications of      243—269
Derivative—expansion procedure, description of      230 236—240
Derivative—expansion procedure, limitations of      269—270 see also Multiple scales method
Detuning      250
Diagram      366 367
Diagram, bare      364
Diagram, connected      370 371 372
Diagram, double      365
Diagram, dressed      365
Diffraction      346 380
Diffusion equation      38
Dirichlet problem      38
Discontinuity      see Singularity
Dispersion relationship      178 217 218 219 220 222 227 266 301
Dispersive waves      78 234 303
Dispersive waves, long nonlinear      38—42 see also Bretherton's equation; Klein — Gordon equation; Thermo-elastic waves; Wave-wave interaction
Divisor, small      196
Domain, effect of, on nonuniformity of expansions      38 42
Domain, infinite      24—31
Duffing equation      50 51
Duffing equation with slowly vary coefficients      286
Duffing equation, exercises involving      54 104 105 223 224 304
Duffing equation, straightforward expansion for      24—25
Duffing equation, treated, by averaging using canonical variables      182—183
Duffing equation, treated, by derivative-expansion procedure      243—245
Duffing equation, treated, by generalized method of multiple scales      286—291
Duffing equation, treated, by Krylov — Bogoliubov method      167
Duffing equation, treated, by Krylov — Bogoliubov — Mitropolski method      175—176
Duffing equation, treated, by Lindstedt — Poincare method      58—60
Duffing equation, treated, by renormalization      95—96
Duffing equation, treated, by Struble's method      171—174
Duffing equation, treated, by two-variable expansion procedure      271—273
Duffing equation, treated, by von Zeipel's procedure      192—194
Dyson equation      371 381
Earth-moon-spaceship problem      233 302 303
Earth-moon-spaceship problem, exercises involving      53 107
Earth-moon-spaceship problem, illustrating limitations of method of strained coordinates      102—103
Earth-moon-spaceship problem, straightforward expansion for      43—45
Earth-moon-spaceship problem, treated, by Lighthill's technique      82—83
Earth-moon-spaceship problem, treated, by method of composite expansions      153—154
Earth-moon-spaceship problem, treated, by method of matched asymptotic expansions      137—139
Earth-moon-spaceship problem, treated, by method of multiple scales      295—298
Eccentricity      64 233 346
Edge layer      111
Eiconal equation      374 377 379
Eigenvalue      56
Eigenvalue problem, linear      68—71
Eigenvalue problem, quasilinear      71—76
Elastic      46 58 90 353
Elastic waves      89—94
Elliptic equation      37 42 98 189 234 303 360
Energy level      56 58
Entropy layer      79
Euler — Lagrange equation      216 217 218 220 222
Faa de Bruno operators      192
Feynman diagrams      308 361—372
Flight mechanics      233
Floquet theory      60 62 64 66
Flow past a sphere, exercise involving      158
Flow past a sphere, straightforward expansion for      28—31
Flow past a sphere, treated by method of matched asymptotic expansions      139—144
Flow through a channel      54 56 216
Flow, down an inclined plane      38—42 99
Flow, hypersonic      79
Flow, jet      99
Flow, past a body      33—34 113
Flutter      234
foci      253
Fokker — Planck equation      235 381
FOURIER      45 167 178
frequency      56 58 96 165 252
Fresnel diffraction      380
Frobenius, method of      5 310
Gauge, function      7 8
Gauge, transformation      232
Gaussian      363 367 369 372
Generalized expansion      see Composite expansion
Generalized method of averaging      see Averaging method
Generalized vector      179
Generalized version of method of multiple scales, applications of      276—302
Generalized version of method of multiple scales, description of      232 241—243
Generalized version of method of multiple scales, limitations of      302—303
Generating function      181 184 189 190 192 195 196 200 202 215
Generating vector      201
Geometrical optics      308 361 374—377 379
Geophysics      110
Graetz problem      384
Green's function      362 364 380
Green's function, double      364
Group velocity      179 219 220 267 299
Hamilton — Jacobi equation      181 182 183 186 190 199
Hamiltonian      223 224 225
Hamiltonian for Duffing equation      182
Hamiltonian for Mathieu equation      184
Hamiltonian for swinging spring      186
Hamiltonian, definition of      180
Hamiltonian, transformation of, using Lie transforms      202 212—216
Hamiltonian, transformation of, using von Zeipel procedure      189—200
Harmonic balance      218
Harmonic resonance      219—221 234 262—269
Harmonic wave      76
Heat      45 79 84 156 342 384
Heat, problem for, equation      150—152
Helmholtz equation      234
Hill's equation      60
Hopf equation      381
Hydraulic jump      89
Hyperbolic equation      37 42 57 99 379.
Inclined plane      see Flow down
Indicial equation      311
Induction      13
Infinite domain, as a source, of nonuniformity      23—31 229
Infinite domain, as a source, of uniformity      38 42
Inhomogeneous      361
Inhomogeneous, problems with turning points      352—359
Initial, boundary value problem for heat equation      150—152
Initial, layer      23
Inner and our expansions      see Matched asymptotic expansions method
Inner expansion      110 112 114 119 145 146 148
Inner expansion for bending of plates      129—132
Inner expansion for earth-moon-spaceship problem      139
Inner expansion for equation with variable coefficients      122—124
Inner expansion for simple example      117—118
Inner expansion for slider bearing      127
Inner expansion for thermoelastic waves      134—135
Inner expansion for turning point problems      336
Inner expansion, definition      117—118
Inner limit      112 118 119 129 131 139
Inner region      113 122 146 153
Inner solution      112 113
Inner variables      119 120 121 144 149 153 154
Inner variables, choice of      114—116 122—124 126—127 134—135 137—138
Inner variables, generalized      145
Instability      78 269.
integral      10 11 12
Integral of motion      24 199
Integral, differential equation      18
Integral, equation      370 380
Integral, relations      99
Intermediate limit      119
Intermediate matching      see Overlapping
Jacobi elliptic functions      189
Jacobian matrix      202
Jerky oscillations      34
Jordan, form      327
Jordan, matrix      327
Josephson tunnel      221
Kamel's algorithm      171
Kamel's method      224
Kelvin — Helmholtz      77 235
Kernel      370
Kiylov — Bogolinbov, method of      165—168
Klein — Gordon equation      175 234
Klein — Gordon equation, exercises involving      105 226
Klein — Gordon equation, treated, by averaging using Lagrangian      221—222
Klein — Gordon equation, treated, by Krylov — Bogoliubov — Mitropolski method      178—179
Klein — Gordon equation, treated, by method of multiple scales      301—302
Klein — Gordon equation, treated, by method of strained parameters      76—77
Kruskal's technique      168 191
Krylov — Bogoliubov technique      165—168 223
Krylov — Bogoliubov — Mitropolski technique      174—179 183 194 211 212 223 224 246 248 303
Lagrange equations      179 180
Lagrangian      179
Lagrangian for Bretherton's equations      217
Lagrangian for Klein — Gordon equation      221
Lagrangian for swinging spring      186
Lagrangian, averaging using      216—222 301
Lame coefficients of elasticity      45 90
Laminar      39 54
Landau, equation      382
Landau, symbols      8 9
Langer's transformation      308 346 384
Langer's transformation for first-order turning point problems      339—341
Langer's transformation for generalization of      341—342
Langer's transformation, successive      350
Latta's technique      144—154
Layer      23 79 111;
Libration points      see Stability of elliptic triangular points
Lie series and transforms      171 199 200—216 223 225 303
Lie triangle      205 206
Lighthill's technique      57 77—95
Lighthill's technique, exercises involving      107 108
Lighthill's technique, limitations of      79 98—100 107 109
LIMIT      7
Limit, cycle, point, or solution      35 99 109
Limit, distinguished      336
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå