Электронная библиотека Попечительского советамеханико-математического факультета Московского государственного университета
 Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум Авторизация Поиск по указателям     Miyahishi M. — Non-complete Algebraic Surfaces Обсудите книгу на научном форуме Нашли опечатку?Выделите ее мышкой и нажмите Ctrl+Enter Название: Non-complete Algebraic Surfaces Автор: Miyahishi M. Язык: Рубрика: Математика/ Статус предметного указателя: Готов указатель с номерами страниц ed2k: ed2k stats Год издания: 1981 Количество страниц: 244 Добавлена в каталог: 18.08.2008 Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID Предметный указатель -bundle      I.4.8.5 -cylinder      I.2.2 -bundle      I.4.8.5 -cylinder      II.5.1 -cylinder, twisted      II.5.1 -fiber space      I.5.1 -bundle      Introduction Action of      I.4.6 Addition formula of Kodaira dimension      I.1.6 Additive group scheme I.4.6 Albanese mapping, Albanese variety      I.2.3.2 Boundary curve      I.4.4.2 Branch point      II.2.3.2 Canonical model      Introduction Component of a divisor, adjacent      III.2.4.1 Component of a divisor, arithmetically effective      I.3.1 Component of a divisor, arithmetically negative      I.3.1 Component of a divisor, connected      I.2.1.2 Component of a divisor, horizontal      II.2.3.2 Component of a divisor, irreducible      I.2.1.2 Component of a divisor, isolated      I.2.4.1 Component of a divisor, pseudo-effective      I.3.1 Component of a divisor, terminal      I.2.4.1 Continued fraction      I.6.6 Contraction, blowing down      I.2.6.4 Cross-section      I.2.4.1 Curve with only one place at infinity      I.6.3 Cusp      I.2.7.2 CYCLE      I.2.1.2 Cylinderlike open set      I.2.2 Dimension, (ordinary) Kodaira      I.1.1 Dimension, D-dimension      I.1.1 Dimension, logarithmic Kodaira      I.1.3 Diophantine equation      I.4.7.1 Diophantine equation, constant solution of      I.4.7.1 Diophantine equation, non-constant solution of      I.4.7.1 Divisor, canonical      Introduction Divisor, divisor of quasi-canonical type      II.3.1 Divisor, effective, strictly effective      I.2.1 Divisor, indecomposable      II.3.1 Divisor, integral      I.3.11 Divisor, reduced      I.2.1 Divisor, support of      I.2.1.2 Divisorial cycle, Q-divisor      I.3.1 Divisorial cycle, Q-divisor, arithmetically effective      I.3.1 Divisorial cycle, Q-divisor, integral part of      II.1.5 Divisorial cycle, Q-divisor, pseudo-effective      I.3.1 Dual graph      I.2.1.2 Elliptic bundle      Introduction Exceptional curve of the first kind      I.2.2 Fiber, general      I.4.5.3 Fiber, generic      II.5.1 Fiber, multiple fiber      I.4.7 1.5.1 Fiber, multiplicity of      I.4.7 Fiber, singular fiber      I.4.7 1.5.1 Fiber, singular fiber of the first kind      I.4.7 Fiber, singular fiber of the second kind      I.4.7 Fibration, -fibration      I.4.3 Fibration, -fibration      I.5.1 Fibration, elliptic      II.2.3.1 Fibration, quasi-elliptic      II.2.3.2 Fibration, relatively minimal      II.3.4 Fundamental cycle      III.2.1 Genus, arithmetic genus of a curve      Notations Genus, geometric genus of a curve      I.2.3.1 Genus, geometric genus of a surface      II.3.4 Genus, logarithmic plurigenus      I.1.3 Genus, plurigenus      Notations Hirzebruch surface      I.2.6.3 Infinitely near point      I.2.4.1 Intersection matrix, negative definite      I.3.1 Intersection matrix, negative semi-definite      I.3.4 Intersection number, multiplicity      Notations Intersection number, multiplicity, self-intersection      Notations Irregularity      I.2.1.1 Line, affine line , projective line Notations Linear chain      I.2.7 Linear equivalence      Notations Linear system      I.1.1 Linear system, base point of      I.2.2 Linear system, canonical, pluricanonical      Introduction Linear system, complete      I.1.1 Linear system, fixed part of      II.3.4 Linear system, movable part of      II.3.4 Locally nilpotent derivation      I.4.6.2 Loop      I.2.1.2 III.2.3 Model, canonical      Introduction Model, quasi-canonical      III.1.1 Model, relatively minimal model of (V,D)      II.2.1 Morphism, canonical, pluricanonical      Introduction Morphism, dominant      I.1.3 Morphism, pluri-quasicanonical      III.1.2 Multiplicative group scheme I.4.8.1 Multiplicative group scheme , action of      I.4.8.1 Multiplicity sequence of a singular point      I.5.7 Node      I.2.7.2 Normal compactification      I.1.3 Normal crossings as singularities      I.1.2 Numerical equivalence      I.3.10 Numerically independent      I.3.6 Pencil, algebraic      I.2.2 Pencil, linear      Notations Plane, affine plane , projective plane Notations Pluri-quasicanonical ring      II1.1.7 Polynomial ring      I.4.1 Quadratic form associated with a Q-divisor      I.3.1 Quadratic transformation,      blowing up 1.2.2 Rational double point      III.2.1 Regular ring      I.4.1 Resolution, minimal      I.6.2 Resolution, minimal good      I.6.2 Riemann-Hurwitz theorem      I.2.3.1 Riemann-Roch theorem      I.2.4.1 Section, cross-section      I.2.4.1 Section, minimal      I.2.6.3 Singular point, cyclic quotient      I.6.6 Singular point, isolated      I.6.2 Singular point, rational      III.2.1 Singular point, rational singular point of type I.6.6 Singular point, simple elliptic      III.3.1 Singular point, simple quasi-elliptic      III.3.1 Standard process      II.1.3 Standard process, transcendental      II.1.6.3 Surface, elliptic      Introduction Surface, rational      I.2.4 Surface, relatively minimal      I.2.6.3 Surface, ruled      I.2.3.2 Surface, surface of general type      Introduction Torsion part of the Picard group      I.4.7.3 Transform, proper, total      Notations TREE      I.2.3.1 Unique factorization domain      I.4.1 Zariski decomposition      I.3.1 Реклама     © Электронная библиотека попечительского совета мехмата МГУ, 2004-2020 | | О проекте