Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hartshorne R. — Ample Subvarieties of Algebraic Varieties
Hartshorne R. — Ample Subvarieties of Algebraic Varieties

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Ample Subvarieties of Algebraic Varieties

Автор: Hartshorne R.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1970

Количество страниц: 256

Добавлена в каталог: 15.08.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\Gamma$-ample      III 4
A-sequence      III 4
Albanese variety of X (Alb X)      III 2 4.15
Algebraizable formal schemes      V 3
Almost base point free dIVisor      II 5
Ample cone ($P^{0} = P^{0}(x)$)      I 8
Ample divisor      I 2
Ample vector bundle      III 1
Arithmetic genus ($p_{a}$)      III 2
Base locus ($B_{n}$ of |nD|)      II 5
Base number or the Picard number ($\rho$)      I 8
Base point (of a linear system)      I 2
Base point free      I 2
Canonical line bundle (K)      III 2
Cartier divisor      I 1
Chern classes ($c_{i}(T)$)      III 2
Cofinite module      III 5
Cohomological dimension of S (cd(S))      III 3
Complete intersection (strict and set-theoretic)      III 5
Complete linear system of dIVisor (|D|)      I 2
Complex-analytic space associated to an algebraic variety S ($S^{h}$)      III 7
Cone of curves      I 8
De Rham cohomology (algebraic) ($H^{i}_{DR}(S)$)      III 7
De Rham complex (algebraic) ($\Omega^{*}_{S}$)      III 7
Differentials ($\Omega^{1}_{X/k}$)      III 2
Divisor      I 0 1
Divisor class of a divisor      I 1
Dualizing differentials      III 4
Effective divisor ($D\geq 0$)      I 2
Effective Lefschetz condition (Leff(X, Y))      IV 1
Etale neighborhood      V 4.9
Exceptional divisor      I 7
Fitting decomposition ($V = V_{s}\oplus V_{n}$)      III 6
Formal-rational functions      V 1
Formal-regular functions      V 1
Frobenius morphism $\pi$      III 6
Functor G      III 6
G1, G2, and G3      V 1
Geometric genus ($p_{g}$)      III 2
Graded (S, F)-module ((M,f))      III 6
Integers cd(S), p(S), q(S)      III 3
Intersection number (($D_{1}\ldots D_{t}. Y$))      I 5
Irregularity of X      III 2
Join of two birational varieties ($J(X_{1}, X_{2})$)      II 6
Lefschetz condition (effectIVe) (Leff(X, Y))      IV 1
Lefschetz condition (weak) (Lef(X, Y))      IV 1
Line bundle      I 3
Linear system ($\varrho$)      I 2
Linearly equivalent divisors ($D_{1}\sim D_{2}$)      I 1
Local equation of a divisor      I 1
Locally a complete intersection      III 4
Modification of a scheme      III 4
Monoidal transformation      III 3.13
Negative vector bundle      III 4.14
Nilpotent part ($V_{n}$)      III 6
Normal bundle ($N_{Y/X}$)      III 2 4
Numerical polynomial      I 5
Numerically effective divisor      I 6
Numerically equivalent curves ($C_{1}\approx C_{2}$)      I 8
Numerically equivalent divisors ($D_{1}\approx D_{2}$)      I 8
Numerically trivial divisor      I 6
P(S)      III 3
p-linear endomorphism      III 6
Picard group (Pic X)      I 1
Poincare residue      III 8
Pole sheaf ($\mathfrak{P}_{\xi}$)      IV 3
Positive line bundle      VI 1
Prime divisor      I 0
Principle divisor      I 1
Projective bundle (scheme) ($\mathbb{P}(E)$)      III 1
Proper intersection      III 4
Pseudo-ample cone      I 8
Pseudo-ample divisor      I 6
q(S)      III 3
q-complete complex space      VI 1
q-pseudoconcave complex space      VI 1
q-pseudoconvex complex space      VI 1
q-pseudoconvex function      VI 1
Regular ring      V 1
Regular sequence      III 4
Restricted inverse limit ($\underline{lim^{'}}$)      III 6
Ruled surface      I 10
Second plurigenus ($P_{2}$)      III 2
Semi-stable vector bundle      I 10
Separates infinitely near points      I 2
Separates points      I 2
Set-theoretic complete intersection      III 5
Stable part ($V_{S}$)      III 6
Stable vector bundle      I 10
Stein factorization      III 4
Stein space      VI 1
Support of a divisor (Supp(D))      I 0 1
Tangent bundle ($T_{X}$)      III 2
Tautological line bundle ($\theta_{\mathbb{P}(E)(1)}$)      III 1
Total transform      I 7
Vector bundle      III 1
Vector bundle (scheme) (V(E))      III 1
Very ample      I 3
Zariski tangent space      I 2
Zeros of a section ($(s)_{0}$)      I 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте