Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bhatia N.P., Szego G.P. — Dynamical Systems: Stability Theory and Applications
Bhatia N.P., Szego G.P. — Dynamical Systems: Stability Theory and Applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Dynamical Systems: Stability Theory and Applications

Авторы: Bhatia N.P., Szego G.P.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1967

Количество страниц: 415

Добавлена в каталог: 14.08.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Solution Funnel, cross section of      3.2.10 3.2.14 3.2.15 3.2.20 3.3.13
Solution Funnel, segment of      3.2.10
Solutions of ODE, continuity of      3.1.26
Solutions of ODE, convergence of      3.2.2
Solutions of ODE, differentiability of      3.2.24 3.2.29
Solutions of ODE, differentiability of, approximate      291 3.4.4
Solutions of ODE, existence and uniqueness of      3.1.46 3.1.47
Solutions of ODE, existence of (Caratheodory)      3.1.11
Solutions of ODE, existence of (Peano)      3.1.8
Solutions of ODE, existence of, on maximal intervals      3.1.13
Solutions of ODE, extendability of      274 3.1.52 3.1.59
Solutions of ODE, maximal      3.1.31
Solutions of ODE, maximal, existence of      3.1.40 3.1.42 3.1.44
Solutions of ODE, minimal      3.1.31
Solutions of ODE, minimal, existence of      3.1.40 3.1.42
Sphere, closed, $S(M,\alpha)$      0.1.6
Sphere, open, $S(M,\alpha)$      0.1.5
Spherical hypersurface, $H(M,\alpha)$      0.1.7
Stability additive pair      2.15.8
Stability additive pair, conditions for      2.15.9 2.15.10
Stability, $\alpha$, for compact sets      2.13.20
Stability, absolute, for compact sets      2.13.18
Stability, absolute, for compact sets, conditions for      2.13.24
Stability, asymptotic, for compact sets      1.5.16 1.5.26—1.5.28 2.6.1 2.6.12 2.6.13 2.11.37 2.11.38
Stability, asymptotic, for compact sets, componentwise      2.6.19
Stability, asymptotic, for compact sets, conditions for      2.7.1 2.7.18—2.7.20
Stability, asymptotic, for compact sets, global      1.5.16 2.6.1
Stability, asymptotic, for compact sets, global, conditions for      3.6.26 3.6.30 3.8.6 3.8.13
Stability, asymptotic, for motions      1.11.12
Stability, asymptotic, for sets      1.6.26 2.12.12 2.12.19 2.12.20
Stability, asymptotic, for sets, conditions for      1.7.8 2.12.18 2.12.24
Stability, asymptotic, for sets, semi      2.12.12
Stability, asymptotic, for sets, semi, conditions for      2.12.17
Stability, asymptotic, for sets, strong      3.3.17
Stability, asymptotic, for sets, uniform      1.6.26 2.12.12 2.12.22
Stability, asymptotic, for sets, uniform, conditions for      2.12.23 2.12.25
Stability, asymptotic, for sets, weak      3.3.17
Stability, equi, for sets      2.12.1
Stability, equi, for sets, conditions for      2.12.1
Stability, Lagrange (L-stability)      1.5.1 1.5.2 2.5.1
Stability, Lagrange (L-stability) and recurrence      2.9.12
Stability, Lagrange (L-stability), negative (L-stability)      1.5.1 1.5.2 2.5.1 2.10.12
Stability, Lagrange (L-stability), positive (L-stability)      1.5.1 1.5.2 2.5.1 2.10.14 2.10.15
Stability, Liapunov, for compact sets      1.5.6. 2.6.1
Stability, Liapunov, for compact sets, componentwise      2.6.8 2.15.5
Stability, Liapunov, for compact sets, conditions for      1.7.1 2.15.6 3.6.6 3.7.3
Stability, Liapunov, for motions      1.11.1—1.11.8 2.10.1 2.10.7
Stability, Liapunov, for motions, with respect to a set      1.11.9 2.10.12 2.10.15
Stability, Liapunov, for sets      1.6.1—1.6.10 1.6.24 2.12.1
Stability, Liapunov, for sets, conditions for      1.7.3 2.12.6
Stability, Poisson      1.10.4 1.10.7 2.5.4
Stability, Poisson, negative      1.10.4 1.10.7 2.5.4
Stability, Poisson, positive      1.10.4 1.10.7 2.5.4 2.5.11
Stability, relative, for compact sets      2.1 5.2
Stability, relative, for compact sets, conditions for      2.15.3
Stability, uniform, for motions      2.10.9 2.10.12
Stability, uniform, for sets      1.6.1—1.6.10 2.12.1 2.12.2
Stability, uniform, for sets, conditions for, conditions for      2.12.8 2.13.30
Stakhi, A.M.      301
Stepanov, V.V.      1.1.9 1.2.48 2.5.15 2.9.14 2.11.40
Sternberg, S.      3.1.47 3.1.70
Strauss, A.      3.7.16
Strong stability properties      1.9.1
Subtangential vectors      3.4.10
Szegoe, G.P.      1.5.43 1.9.11 2.8.14 3.6.33 3.8.33
Tietze extension theorem      3.4.9
Topological transformation group      1.1.8
Trajectory      1.2.1 1.2.6 2.2.1
Trajectory segment      1.2.1
Trajectory uniformly approximating its limit set      2.10.13
Trajectory, periodic      2.4.2
Trajectory, positive (negative) semi      1.2.1 1.2.6 2.2.2 2.2.3
Trajectory, positively asymptotic      1.3.29 1.10.11
Trajectory, recurrent      2.9.4—2.9.12
Trajectory, self-intersecting      2.4.4
Trajectory, stable      see “Stability”
Transition      1.1.1 1.1.3—1.1.5 115
Tube      2.11.23—2.11.25 2.11.28
Tube, compactly based      2.11.29 2.11.34 2.11.35
Uniqueness conditions for solutions of ODE      3.1.18 3.1.27 3.1.46 3.1.47 3.1.51
Ura, T.      1.3.35 1.4.14 1.5.43 2.2.17 2.3.18 2.13.31 2.15.11 298
van Kampen, E.R.      3.1.51
Vinograd, R.E.      3.1.70
Vrkoc, J.      2.7.25 3.6.33
Walter, W.      3.1.70
Wazewski, T.      1.8.6
Whitney, H.      1.1.9 2.11.40
Whyburn, G.T.      1.1.9
Wintner extendability conditions      3.1.61
Wintner, A.      277
Yorke, J.      3.1.70 3.2.19 366
Yoshizawa, T.      2.7.25 316 2.6.33
Young, G.      2.2.17
Zippin, L.      1.1.9
Zorn Lemma      1.2.48
Zubov, V.I.      1.5.43 1.6.52 1.7.16 2.7.25 2.12.28 3.6.33
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте