Авторизация
Поиск по указателям
Gelbaum B.R. — Problems in Real and Complex Analysis
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Problems in Real and Complex Analysis
Автор: Gelbaum B.R.
Аннотация: This book builds upon the earlier volume Problems in Analysis, more than doubling it with a new section of problems on complex analysis. The problems on real analysis from the earlier book have all been checked, and stylistic, typographical, and mathematical errors have been corrected. The problems in complex analysis cover most of the principal topics in the theory of functions of a complex variable. The problems in the book cover, in real analysis: set algebra, measure and topology, real- and complex-valued functions, and topological vector spaces; in complex analysis: polynomials and power series, functions holomorphic in a region, entire functions, analytic continuation, singularities, harmonic functions, families of functions, and convexity theorems.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1992
Количество страниц: 504
Добавлена в каталог: 14.07.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Left-continuous, invariant (Haar) measure 4.2. 44
Leibniz, VON, G. W. rule s 6.4. 367
Length (Euclidean) 3.1. 30
Length of a curve 3.1. 36 4.1. s
Lexicographic partial order 7.1. 95
Limit point 2.1. 14
Lindelof, E. space 6.2. 345
linear combination 5.3. 67
Linear programming 15.1. 132
Liouville, J. theorem s 10.1. 398
Lipschitz, R. constant 5.1. 64 s
Locally bounded 6.1. 70
Locally compact 1.1. 4
Locally convex 6.1. 70 s
Locally injective s 10.2. 402
Log convex 11.2. 119
Lower semicontinuous 2.1. 16
Lower triangular matrix s 3.2. 223
Maximum Modulus Principle 9.3. 109 s s
Maximum principle (in D relative to B) 15.1. 133
Mean value property 13.1. 124
Mean value theorem s 2.2. 169
Measurable partition 4.1. 40 6.1. s
Measure isomorphic 5.2. 66
Measure situation 1.1. 4
Meromorphic 11.2. 117 12.1. s
Mesh (of a partition) s 3.1. 214
Metric density theorem s 5.1. 266 s
Metrizable 2.1. 19
Metrized 2.1. 19
Middle function 1.2. 7
Middle number 1.2. 7
Midpoint convexity s 3.1. 199
Minimal base 2.1. 18
Minimal measurable cover 5.1. 52
minimum modulus theorem s 10.2. 400
Minkowski, H. functional 6.1. 70
Mittag-Leffler, G. theorem 12.3. 123 s s
Mobius, A. F. transformation 7.1. 96
Modular function 4.2. 46
Modular ideal 6.4. 89
Module 6.1. 71
Modulo 1 addition 5.1. 53
Modulo a null set s 5.1. 252
Modulo column/row operations s 3.1. 193
Modulus of continuity 3.1. 31
Monodromy theorem s 10.2. 402
Monotone class 1.1. 4
Monotone class of functions 1.2. 8
Monotone Convergence Theorem 1.2. 10
Monotone space 1.1. 4 2.1.
Monotonely increasing 5.1. 63
Morera, G. theorem s 11.2. 417 418
Morphism 2.3. 24
Multiplicity 7.3. 99 s s
Mutually singular 5.1. 48
Natural boundary 11.1 116
Natural numbers 1.1. 3
Neighborhood 2.1. 12
Net 2.1. 14
Net—corresponding to a filter 2.1. 15
Neumann, von, J. 5.3. 69 15.1.
Nonatomic 4.1. 40 5.1.
Nonnegative (linear functional) 1.2. 8
Nonoverlapping s 5.1. 269
Norm 2.3. 24 6.1.
Normal (family of functions) 14.2. 127
Normal (subgroup) s 2.3. 189
Normal (topology) s 6.2. 345
Normed vector space 2.3. 24 6.1. 6.2. 6.3.
Nowhere dense s 2.1. 160 s
Null set 1.2. 11 4.2.
Object 2.3. 29
Odd 2.3. 25 s
Open ball 2.1. 16 3.1. s
Operator norm 2.3. 24 - 25 6.2.
Order (of a group) s 2.3. 189
Order (of growth) 10.3. 112
Orthogonal projection 6.2. 81 s
Orthonormal 5.1. 51 6.2.
Orthonormal basis s 5.1. 279
Ostrowski, A. theorem 11.1. 116
Outer measure 1.2. 11 4.1. s
Outer regular (measure) 4.1. 40
P-dimensional Hausdorff measure 4.1. 41
Paracompact s 6.2. 345
Parseval(-Deschenes), M. A. equation s 3.2. 222 s6.2.
Partially ordered set 2.1. 13
Partition 3.1. 35
Partition of unity 6.1. 72
Perfect 2.1. 14 20 5.1.
Period 6.3. 85 s
Periodic s 12.3. 428
Picard, E. (great) theorem 14.3 130 s s
Plancherel, M. theorem s 5.1. 287 s
Poincare, H. theorem 11.2. 119
Point of condensation s 9.3. 392
Pointwise ergodic theorem 5.3. 69
POISSON — Jensen, J. L. W. V. formula 13.2. 126
POISSON, S. D. formula s 13.1. 431 s
Pole 7.3. 99 s
Polynomial 2.3. 26 3.1. 5.1.
POSET 2.1. 13
Positive definite 6.2. 79 s
Positive homogeneous s 1.2. 149
Positive measure 1.1. 4
Positive part 12.1. 121 s
Principal ideal 2.3. 24 28 14.3.
Principle of the argument s 9.2. 391
Principles of the maximum and minimum 13.1. 124 - 125
Product measure 5.1. 48
Product topology 2.1. 13 18
Projection (in a Cartesian product) 5.1. 49
Projection (in a Hilbert space) 6.2. 81 s
Quasinorm 6.1. 70
Quaternion 1.1. 3
Quotient group s 2.3. 189
Quotient norm 6.3. 84
Quotient object 2.3. 29
Quotient space 4.2. 45
Quotient topology 6.3. 83
Rademacher, H. functions 5.3. 68
radiaL 6.1. 70
Radial limit function 8.1. 102
Radical 6.4. 90 s
RADIUS 2.1. 16
Radius of convergence 7.3. 99
Radon, J.-Nikodym, O. derivative 5.1. 48 s
Random variable 5.2. 66
RANGE 2.1. 17
Real algebraic number 1.1. 3
Real irrational number 1.1. 3
Real number 1.1. 3
Real rational number 1.1.3
Rectifiable 2.1. 20
refinement 2.1. 14 21
Refines 2.1. 14
Reflection 7.1. 97
Reflexive Banach space 6.3. 84
Region 6.4. 90 7.1.
Regular function 11.2. 120
Regular ideal 6.4. 89
Regular map 1.1. 6
Regular measure 4.1. 40
Regular point 11.1. 115
Regular space s 6.2. 345
Relation 2.1. 14
Removable singularity 9.3. 107 12.3 121 122 s
Residue 12.1. 121
Residue theorem s 11.2. 416
Rouche, E. theorem s 7.2. 376 s
Row operations s 3.1. 193
Runge, C. theorem 12.3. 123
Running water lemma s 3.1. 192
Schauder, J. basis 6.1. 71 6.3.
Schottky, F. theorem 14.4. 130
Schwarz lemma s 8.1. 382 386 389
Schwarz reflection principle s 8.1. 382
Schwarz, H. A. formula 13.2. 125
Second category 5.1. 61
Section 5.1. 49 s
Self-dense 2.1. 14
Self-dense kernel 2.1. 14 s
Self-map s 8.2. 389
Semicontinuous 2.3. 28
Semigroup 4.2. 47
Semigroup with a cancellation law 4.2. 47
Seminorm 6.1. 70
Separable 2.1. 19 20 4.1.
Separable of a topological space, that there is a countable base for its topology, separated 2.1. 14
Separating 2.3. 178
Set function 4.1. 40
Simple arc s 9.2. 390
Simple closed curve 2.1. 12
Simple function 4.1. 41 s
Simple pole 12.1 121
Simply connected 7.1. 95 9.1. s
Singular part 12.1. 121
Singular point 11.1. 116
Singularity 7.3. 99 12.1.
Span (noun) 5.3. 67
Span (verb) 5.3. 67
Spherically normal 14.4. 127
Step-function 10.3. 113 s
Stereographic projection 7.1. 96
Stieltjes, T. J. measure s 5.1. 263
Stirling, J. formula s 10.3. 407
Stone — Weierstrass, K. theorem 2.3. 176
Stone, M. H. 1.2. 7
Stronger, ~est (topology) 2.1. 12
Subadditive 1.2. 10 s
Subcover 2.2. 21
Subharmonic 15.1. 133
Subordinate 6.1. 72
subspace 5.3. 67
Subsum 2.2. 22
Superadditive s 4.1. 225
Support (of a function) 1.1. 4
Support (of a measure) 5.1. 48
Supporting line 3.1. 30 s
Surjection 2.1. 18 s
Surjective 6.2. 82 s 156
Suslin, M. [Souslin, M.] 1.2. 7
Symmetric difference 5.1. 48
Szpilrajn, E. s 1.2. 146
ternary 5.1. 50
The -ary representation 5.1. 50
The Cantor function 2.1. 18
The Cantor set Co 2.1. 16
The Cantor-like set Ca 2.1. 16
Theory of games 15.1. 132
Thick s 4.4. 243
Thorin, G. O. theorem 15.1. 132 s
Tietze, H. extension theorem s 3.1. 214
Toeputz, O. matrix 2.2. 23
Topological field 2.3. 24 3.1. 6.1.
Topological group 2.1. 15 2.3.
Topological semigroup 4.2. 47
Topological vector space 3.1. 30 6.1.
Totally bounded s 6.3. 353
Totally disconnected 3.1. 36
Totally finite 1.1. 5
Transcendental 10.2. 110
Transfinite induction (principle) s 1.1. 140—141
Transitive 2.1. 13
translate 2.3. 26
Translation-invariant 2.3. 27 6.2. s s
Triangle inequality s 3.2. 223
Trivial topology 2.1. 12
Type (of its order) 10.3. 112
Ultrafilter 2.1. 14
Uniform boundedness principle s 2.3. 187 s s
Uniformity situation 2.1. 15
Uniformly continuous 2.2. 21
Uniformly convex 6.1. 71
Uniformly integrable 5.1. 49
Unimodular 4.2. 46
Unit ball 6.1. 77
Unit sphere 3.1. 35
Unitary 5.3. 69 6.2.
Univalent s 10.2. 400
Upper semicontinuous 2.1. 16 2.3.
Urysohn, P. lemma 4.1. 43 s
Vandermonde, A. T. s 2.2. 172
Vanishing at infinity 1.1. 4
Variance 5.2. 66
Variation 3.1. 35
Vitali, G. theorem s 9.3. 392 396 s
Walsh, J. L. functions 5.3. 68
Weak basis 6.1. 71
Weierstrass factorization (product) theorem 10.3. 112 s
Weierstrass — CASORATI, F. theorem s 10.2. 399
Weierstrass, K. approximation theorem s 2.2. 172 s 5.1.
Weight 2.1. 18
Weil, A., topology s 4.2. 247
Well-ordered 1.1. 4
Well-ordering Axiom 2.1. 14
Weyl, H. equidistribution theorem 4.1. 43
Wiener, N.-Tauber, A. theorem s 6.2. 346
Winding number s 9.2. 391
WlRTlNGER, W. inequality 3.2. 38
Young, G. C.-Young, W. H. theorem 15.2 135
ZERMELO, E.-Fraenkel, A. A. axiom system for set theory 4.2. 243
Zero object 2.3. 29
Zero-one law 5.3. 67
Zeta function 11.2. 118
ZORN, M. lemma 2.1. 14
Реклама