Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Winkelmann J. — The Classification of Three-Dimensional Homogeneous Complex Manifolds
Winkelmann J. — The Classification of Three-Dimensional Homogeneous Complex Manifolds



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Classification of Three-Dimensional Homogeneous Complex Manifolds

Автор: Winkelmann J.

Аннотация:

This book provides a classification of all three-dimensional complex manifolds for which there exists a transitive action (by biholomorphic transformations) of a real Lie group. This means two homogeneous complex manifolds are considered equivalent if they are isomorphic as complex manifolds. The classification is based on methods from Lie group theory, complex analysis and algebraic geometry. Basic knowledge in these areas is presupposed.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 248

Добавлена в каталог: 05.07.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$Q_{3}\backslash L$      80
$\mathbb{C}^{2}$-bundles over $\mathbb{P}_{1}$      58
$\mathbb{C}^{2}\backslash \mathbb{R}^{2}$-bundles      109
$\mathbb{C}^{2}\backslash \mathbb{R}^{3}$      150
Anticanonical fibration      98
Bounded homogeneous domains      5 10 92 152
Canonical subgroups      87
Closedness conditions for algebraic subgroups      24
Closedness conditions for subgroups      22
Compact homogeneous manifold      38
Complex line reduction      6
Complexification of a Lie group      87
Complexification of a manifold      204
CR-hypersurfaces      124
Discrete subgroups in semisimple groups      2 38
Functions associated to a divisor on $\mathbb{P}_{2}\backslash Q_{1}$      54
Heisenberg group      4 124
Heisenberg group is not a commutator group of a nilpotent group      105
Hopf surfaces      3
Hypersurface separability      6
Ineffectivity      88
Ineffectivity for $H^{+}$-bundles      90
Kobayashi-pseudometric      6
Left-invariant complex structures      95 205
Line bundle over the affine quadric      65
Line bundles over $\mathbb{P}_{2}\backslash Q_{1}$      53
Line bundles over homogeneous-rational manifolds      51
Line bundles over the affine quadric      52
Maximal holomorphic fibration      10 100
Maximal subgroups in semisimple groups      46
Meromorphic separability      5
Minimality conditions      68
Nilpotent groups      105 172
Nilradical      106
Principal bundles over $\mathbb{P}_{2}(\mathbb{C})\backslash \mathbb{P}_{2}(\mathbb{R})$      195 203
Principal bundles over $\mathbb{P}_{2}(\mathbb{C})\backslash \overline{\mathbb{B}_{2}}$      196 203
Principal bundles over homogeneous-rational manifolds      49
Pseudoconcave manifolds      8
Radical-fibration      25 191
Representations of $SL_{2}(\mathbb{C})$      58
Symmetric domains      5
Vector bundles or rank two over $\mathbb{P}_{1}$      62
Weight spaces      96
Zariski-density of orbits of real forms      87
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2020
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте