Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Wahlbin L.B., Dold A. (Ed), Takens F. (Ed) — Superconvergence in Galerkin Finite Element Methods
Wahlbin L.B., Dold A. (Ed), Takens F. (Ed) — Superconvergence in Galerkin Finite Element Methods



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Superconvergence in Galerkin Finite Element Methods

Авторы: Wahlbin L.B., Dold A. (Ed), Takens F. (Ed)

Аннотация:

This book is essentially a set of lecture notes from a graduate seminar given at Cornell in Spring 1994. It treats basic mathematical theory for superconvergence in the context of second order elliptic problems. It is aimed at graduate students and researchers. The necessary technical tools are developed in the text although sometimes long proofs are merely referenced.
The book gives a rather complete overview of the field of superconvergence (in time-independent problems). It is the first text with such a scope. It includes a very complete and up-to-date list of references.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 184

Добавлена в каталог: 05.07.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$l_{2}$-projection      5 36 42
$L_{2}$-projection, stability in $L_{p}$      35 39
$L_{2}$-projection, superconvergence in      42
Approximation theory      30
Boundary element method      116
Bramble — Hilbert lemma      37
Computational domain      100
Delta-function, discrete      10 38
Delta-function, exponential decay in      10 39
Difference quotients      23 87 89 101 110
Difference quotients, maximum-norm estimates via on translation invariant meshes      92
Duality argument      31 50
Finite elements      see also "Meshes"
Finite elements, Hermite cubics      1 16 27
Finite elements, intermediate degree (incomplete)      134
Finite elements, isoparametric      98
Finite elements, Serendipity      134
Finite elements, smoothest splines      1
Gauss points      81 82 133
Hermite cubics      1 16 27
Integral equation      25 116 121
Inverse estimates      7 28 37
Isoparametric elements      98
K-operator      107
Lagrange multiplier method      123
Leibniz' rule, discrete      91
meshes      see also "Finite elements"
Meshes, Chevron pattern      125 133
Meshes, criss-cross pattern      47 125 133
Meshes, quasi-uniform      2
Meshes, regular pattern      125 133
Meshes, symmetric w.r.t. a point      11 44 74
Meshes, tensor product      43 65 96 134
Meshes, translation invariant      84 98
Meshes, uniform      12
Meshes, Union Jack pattern      125 133
Minimal surface equation      95
Monotone      95
Multigrid      97
Negative norm estimates in $L_{2}$-projections      42
Negative norm estimates in elliptic projections      69
Newton's method      96
Outflow derivative      25 121
p-Laplacian      95
Physical domain      98
Principal lattice points      126
Quasiinterpolant      5
Quasiuniform meshes      2
Smoothest splines      1
Smoothing operator      32
Superapproximation      5 33 36
Superconvergence      3
Superconvergence, nodal      3
Symmetric meshes w.r.t. a point      11 44 74
Tensor product elements      43 65 96 134
Translation invariant spaces      84 98
Translation invariant spaces, maximum norm estimates via difference quotients      92
Uniform meshes      12
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте