| 
			         | 
		         
		       
		        
			          | 
		          
		        
					| Авторизация | 
		         
		        
					| 
 | 
		          
		        
			          | 
		          
		        
			        | Поиск по указателям | 
		         
		        
			        
					 
				        
					
			         | 
		          
		        
			          | 
		          
			
			         | 
		         
       		 
			          | 
		          
                
                    | 
                        
                     | 
                  
		
			          | 
		          
		        
			          | 
		          
		
             
	     | 
	    
	      | 
	    
	    
            
		 |  
                
                    | Jannsen U. — Mixed Motives And Algebraic K-Theory | 
                  
                
                    | 
                        
                     | 
                 
                                                                
			          | 
	          
                
                    | Предметный указатель | 
                  
                
                    
                         ,        115 117  
 , Alb(X)      157  
       85  
 ,        155  
       178  
       57  
       105 107  
 ,        140 156  
 ,  ,  ,        58 59 62  
 ,  ,  ,        57 62  
 , L(V, s)      115  
 ,  ,  ,        81  
 ,  ,        49  
 ,        12  
 ,  ,        88  
 ,        16 75  
 ,        12 13  
       82  
 ,        94  
       70  
 ,        80  
       185  
       68  
       174  
 (=  for  )      180  
       35  
 ,        1 25  
 ,        1 32  
 ,        1 32  
       15  
       86  
       104  
 ,  ,        10  
       17  
 ,        1 10 34  
       1 10 33  
 ,        104  
 (Z.),  (Z.)      101  
 ,        122  
 (X., Y.)      98  
 ,        67  
 ,        65  
       133  
       76 162  
 ,  ,        161 162  
       86  
 ,        127 128  
       79  
       167  
 ,  ,        50  
 ,        89  
       10 83 87  
 , div, tame      105  
  (two meanings)      27 76  
 ,        107 108  
 ,        140  
 ,        208 209  
       14 81 125  
       70 71  
       76  
 ,        209  
       94  
       106  
 ,  ,        180  
 ,        79  
 ,        25 26  
 ,        36 57  
       32  
 ,        2 32  
  (identity object)      13 80  
 , H(n)      17  
 ,        43 46  
       9  
       15 125  
       25  
 ,        184 206  
 ,        199  
       204  
       200 205  
       172  
 -adic (co)homology      1 4 32 36—40 69 86 89—90 97 101 115—117 126 149—151 172 184—186 191 215—219  
 -adic (co)homology and motivic (co)homology      127 184 189—221  
 -adic Chern character      69 74 190 200 205 210  
A-       92  
Abel — Jacobi map      140—143 151 153—178 183 204  
Absolute (co)homology theory      153 174 182 183  
Absolute Hodge cycle      3 14 59—65 72 73 127  
Adams operators      67 104  
Albanese variety      157—160 177  
Algebraic cycle      57 107 108 115—121 139—141 155 165 168 170 173—180  
Arithmetic  -representation, -sheaf      199 204  
Arithmetical dimension      115—117  
Artin motives      49 53  
Base change      41 89 116 117 186 200 218  
Base extension      16 75  
Beilinson complexes      209  
Beilinson conjecture on Chow groups      178—182  
Beilinson/Bloch conjecture      158 168  
Betti (co)homology      92  
Birch and Swinnerton-Dyer      168 169  
Bloch — Ogus theory      see "Poincare duality theory"  
Bloch's conjecture on zero cycles      177  
Bloch's theorem on zero cycles      158  
Bloch's theorem on zero cycles generalizations      170 182  
Canonical filtration      28  
Chern class, character      65 67—75 122—126 154 190 200 205 206 209 210 216  
Chow group      57—59 105—107 109 118 121 122 154—182 189 204 212 220  
Comparison isomorphism      1—5 11 14 33 34 40 41 58 59 65 97 126  
Continuous etale cohomology      70 149—151 153  
 | CYCLE      see "Algebraic cycle"  
Cycle map      57—59 107—109 113 115 117 122 126 140 143 151—154 162 174 175 189 219  
de Rham (co)homology      1 8 25 30 58 93 96 125  
de Rham complex      25—31 96 97 101  
Deligne (co)homology      68 69 131 132 152 153 182 183 186  
Effective (Hodge structures or  -adic representations)      172  
Extension class      139—143 150 176 180—183 204  
Fibre functor      14 49 125  
Filtration by coniveau      76 162—164 168—173 182 211  
Filtration on Chow groups      178—182  
Fundamental class      81 107 110 123 126  
Galois descent      74 75 216  
Geometric cohomology      129 153 177 183  
Good proper cover      113 114 118 119 163  
Grothendieck motive      180  
Grothendieck — Riemann — Roch      122  
Grothendieck/Serre conjecture      5 61 191  
H      10 43 46  
Higher Chow groups      209 212  
Hodge conjecture classical      58 77  
Hodge conjecture for arbitrary varieties      63 108 114  
Hodge conjecture generalized (Grothendieck)      172  
Hodge cycle      60 61 121  
Hodge filtration      10 18 30 32 33 97  
Hodge structure      1 58 172  
Homologous to zero/homological equivalence      139 140 168 176 179  
Identity object      13 80 83  
Intermediate Jacobian      141 157  
Internal hom      13  
Intersection of cycles      174—178  
K-cohomology      106 121  
K-theory,  -theory      65 67—79 104—107 121—128 131—138 181 189 190 210 220  
L-function      115—121 168 169 220  
Level filtration      182  
Lichtenbaum complexes      212  
Linear varieties      217—221  
Mixed  -adic sheaf      89—91 117 120  
Mixed absolute Hodge complex      98—102  
Mixed Hodge structure      10—13 32 34 64 92 93 100 141—143 152 186—188  
Mixed motive      43—56 181—184 188  
Mixed realization (for absolute Hodge cycles) of a smooth variety      35 55  
Mixed realization (for absolute Hodge cycles) of an arbitrary variety      94—104 115 125 175 177 217  
Mixed realization (for absolute Hodge cycles), abstract      9—24 43 94  
Motive as defined by Grothendieck      180  
Motive for absolute Hodge cycles      1—4 46—49 56  
Motive, attached to a modular form      5—9  
Motivic (co)homology      67 104—107 181 182 189 209—213 215 216  
Motivic (co)homology and  -adic (co)homology      127 184 189—221  
Motivic (co)homology and other (co)homology theories      126—130 154—156 182—184  
Mumford — Tate group      61 62  
Mumford's counterexample      157  
Numerical equivalence      178—180  
One-semi-simple      193 199  
Parshin's conjecture      189  
Poincare duality      3 8 45 82 108 118 128 134 140 190 215  
Poincare duality theory (twisted)      79—107 121—126 173—176 182 186 194 208 210 214—216  
Poincare duality theory (twisted) with weights      85 89 92 94 109—113 129 130 139 154—156 161 180  
Potential  -adic sheaf      185 199  
Projection formula      19 81 111 130 171  
Pull back morphism (in homology)      215  
Pure (of weight m)  -adic representation/sheaf      87 116  
Pure (of weight m) Hodge structure      10  
Pure (of weight m) object      83—85  
Pure (of weight m) realization      12 15 46 63 64  
purity      38 77 208 210  
r,        126 154 182  
Realizations for absolute Hodge cycles      12 15 16 46 55 see  
Realizations, attached to a modular form      5—9  
Realizations, Betti (Hodge), de Rham,  -adic and others      1 12 73 95 96 103 115 182—184 186  
Regulator map      184  
Representable        177 182  
Resolution of singularities      25 56 93 95 112 114 191 192 194 195  
Restriction      16 75  
Riemann — Roch theorem      122 123  
Riemann — Roch transformations      123—128 154 190 204 206  
Roitman's theorems on zero cycles      157 159 160  
Semi-simplicity      50 51 63 113 180 191—195 199 204 218 see  
Simplicial variety      93 95—97 100—102 192  
Smooth  -adic sheaf      87 116 199 201 218  
Specialization map      201—203 219  
Spectral sequence, associated to a filtration      29  
Spectral sequence, Bloch — Ogus      197  
Spectral sequence, Brown — Gersten      106  
Spectral sequence, Hochschild — Serre      70 143 150 151 153 203 206  
Spectral sequence, hypercohomology/ext      144 151 152 180—183 211  
Spectral sequence, Leray      32 41 185—187  
Spectral sequence, Quillen      71 76 105 131 133 220  
Standard conjectures      179 181  
T(X),        157  
Tannakian category      14 15 43—56 61  
Tate conjecture for arbitrary varieties      63 109 114 116—121  
Tate conjecture, classical      57 77 115  
Tate conjecture, generalized (Grothendieck)      172  
Tate realization, object      17 181  
Tate twist      2 17 18 58 92  
Td(X), ch,        123  
Tensor category      14 80 82 83 86 see  
Tensor category with weights      83—85 88 92 94 180—183  
Todd class      123—126  
Twisted Poincare duality theory      see "Poincare duality theory"  
Variety      93  
Weight      see "Pure of weight m"  
Weight filtration on (co)homology      30—32 89 92 97  
Weight filtration on a mixed realization      10 12 94  
Weight filtration on a tensor category      83 84  
Weight filtration on an adic representation      87—91  
Weight spectral sequence      30—43  
Weights occurring in (co)homology      66 85 89 92 116 117  
Weights occurring in an object      66 83  
Weil cohomology      181  
 |   
                            
                     | 
                  
			  | 
		          
			| Реклама |  
			  | 
		          
			 |  
                             
         |