Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Wolter K.M. — Introduction to Variance Estimation
Wolter K.M. — Introduction to Variance Estimation



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Introduction to Variance Estimation

Àâòîð: Wolter K.M.

Àííîòàöèÿ:

We live in the information age. Statistical surveys are used every day to determine or evaluate public policy and to make important business decisions. Correct methods for computing the precision of the survey data and for making inferences to the target population are absolutely essential to sound decision making. Now in its second edition, Introduction to Variance Estimation has for more than twenty years provided the definitive account of the theory and methods for correct precision calculations and inference, including examples of modern, complex surveys in which the methods have been used successfully.

The book provides instruction on the methods that are vital to data-driven decision making in business, government, and academe. It will appeal to survey statisticians and other scientists engaged in the planning and conduct of survey research, and to those analyzing survey data and charged with extracting compelling information from such data. It will appeal to graduate students and university faculty who are focused on the development of new theory and methods and on the evaluation of alternative methods. Software developers concerned with creating the computer tools necessary to enable sound decision-making will find it essential.

Prerequisites include knowledge of the theory and methods of mathematical statistics and graduate coursework in survey statistics. Practical experience with real surveys is a plus and may be traded off against a portion of the requirement for graduate coursework.

This second edition reflects shifts in the theory and practice of sample surveys that have occurred since the content of the first edition solidified in the early 1980s. Additional replication type methods appeared during this period and have featured prominently in journal publications. Reflecting these developments, the second edition now includes a new major chapter on the bootstrap method of variance estimation. This edition also includes extensive new material on Taylor series methods, especially as they apply to newer methods of analysis such as logistic regression or the generalized regression estimator. An introductory section on survey weighting has been added. Sections on Hadamard matrices and computer software have been substantially scaled back. Fresh material on these topics is now readily available on the Internet or from commercial sources.

Kirk Wolter is a Senior Fellow at NORC, Director of the Center for Excellency in Survey Research, and Professor in the Department of Statistics, University of Chicago. He is a Fellow of the American Statistical Association and a Member of the International Statistical Institute. He is a past president of the International Association of Survey Statisticians and a past chair of the Survey Research Methods Section of the American Statistical Association. During the last 35 years, he has participated in the planning, execution, and analysis of large-scale complex surveys and has provided instruction in survey statistics both in America and around the world.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd edition

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 447

Äîáàâëåíà â êàòàëîã: 02.07.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$\delta$-method      see “Taylor series”
AAPOR      see “American Association for Public Opinion Research”
Accuracy      3—4 162 170 280 355—356
Accuracy, of variance estimate      3 354—355 365
American Association for Public Opinion Research      19
American Statistical Association      410
ASA      see “American Statistical Association”
B&B      see “Baccalaureate and Beyond Longitudinal Study”
Baccalaureate and Beyond Longitudinal Study      290 294
Balanced half-sample method      113 115—116 146 354 367
Balanced half-sample method, alternate ascending order      126
Balanced half-sample method, asymptotic theory      25 217
Balanced half-sample method, for $n_h = 2$      180 214 373
Balanced half-sample method, for multistage sampling      27 33 46 48 88 113 117 123 210—213 221 250 427—428
Balanced half-sample method, for nonlinear estimators      25—26 50 85 116—121 142 169—170 214—215
Balanced half-sample method, for srs wr      165—166 208 307 379
Balanced half-sample method, for without replacement sampling      11 16 46 56 60 83 116 19 121—122 166
Balanced half-sample method, nearly equal sum      126
Balanced half-sample method, partial balancing      123 125 127—128 138 140 365
Balanced half-sample method, semiascending order      126
Balanced half-sample method, transformations for      63 363 384—387
Balanced repeated replication      see “Balanced half-sample method”
Base weights      264
BHS      see “Balanced half-sample method”
boot      see “Bootstrap”
Bootstrap      194—217
Bootstrap estimator of variance      197 200 203 205—206 208—209 211 213—217 220 380—382
Bootstrap replicate      195 201—202 204 207 211—212 214—217
Bootstrap sample      195—211
Bootstrap, BWO variant      201
Bootstrap, BWR variant      201
Bootstrap, Correction factor variant      200 206 208
Bootstrap, Mirror — Match variant      202
Bootstrap, rescaling variant      200 206 208
BRR      see “Balanced repeated replication”
Capture-recapture estimator      190—191
Case weights      see “Weights”
Certainty stratum      87—88 240
CES      see “Consumer Expenditure Survey”
Characteristic of interest      7—8 18 290 321—322 382 402 417
Clusters      see “”primary sampling unit
Collapsed stratum estimator      50—57 97 127—128 146
Collapsed stratum estimator, alternatives to      54
Commodity Transportation Survey      102—105
Complementary half sample      115
Complex sample survey      2—4 21 25 60 179 221 231 354 369—370 388 410
Components of variance      48 54 146 355 409
Composite estimator      91 235 237 239
Confidence interval      24—25 32 107 217 294 298—299 308 315 320 322 346—347 351—358 362—364 388—389 391 393
Consumer Expenditure Survey      92—99 241 359—360 391
Controlled selection      55 93 97 143 146 279
Convergence      332—333
Convergence, in distribution      333
Convergence, in probability      333
Correlation coefficient      3 22 116 119 151 156 226 270—271 300 302 313 340 357 359 384 389 397
Correlation coefficient, asymptotic theory for      389
Cost of variance estimators      3 302 338
cps      see “Current Population Survey”
CTS      see “Commodity Transportation Survey”
Current Population Survey (CPS)      55 93 107 143 189 258 273—274 278—279 320 356
Customary variance estimators      see “Standard variance estimators”
Design effect      275 277 280 288 290—295 297
Distribution function      9 152—153 194 382—383
Distribution function, Bernoulli      62
Distribution function, beta      67
Distribution function, discrete uniform      63
Distribution function, exponential      72
Distribution function, gamma      70
Distribution function, logarithmic series      65
Distribution function, mixed uniform      72
Distribution function, normal      24—25 69 73 139
Distribution function, poisson      64
Distribution function, standard Weibull      71
Distribution function, triangular      68
Distribution function, uniform      63 66 72
Donor      83 419 427 430
Double sampling      2 15 22 33
Double sampling designs      217
Dual-system estimator      see “Capture recapture estimator”
Early Childhood Longitudinal Study-Kindergarten Class of      1998—99 253
ECLS-K      see “Early Childhood Longitudinal”
ECLS-K, Study-Kindergarten Class of      1998—99
Economic Censuses      321
Estimator      1—6 8—19 21—30 32—74 81—86 88—91 94—97 103—104 107—111 113—125 127—131 137—142 144 146 148 151—154 156 158—184 187 190—221 226 229—232 234—241 244 247—253 257—278 289—293 298—309 313—317 335 337 345—346 352 403 407—408
Estimator, difference of ratios      116 140 173 244
Estimator, Horvitz — Thompson      10 12 19 46 50 85—86 89 103 121 140 144 168—169 204 209 236—237 249 260 273—274 299 335 337 345—346 352 403 407—408
Estimator, linear      16—18 23 25 36 40—41 84—86
Estimator, nonlinear      16 25 50 85—86 116
Estimator, of variance      10
Estimator, ratio      2 6 8 17—18 25 31—34 55 57 66 72—73 84 116 119—120 127 179 193 210 220 264
Estimator, Taylor series estimator of variance      237 247
Excess observations      33 38—40
Expectation      6 9 23—24 35 37 42
Finite population      6 18 22 25 43 46 56 62 73 120
Flexibility of variance estimators      354
Fractional imputation      429—431
Full orthogonal balance      112 120 122
Galois fields      137
Generalized regression estimator      261 263
Generalized variance functions (GVF)      6 272—290
Generalized variance functions (GVF), alternative functions      275
Generalized variance functions (GVF), applied to quantitative characteristics      273
Generalized variance functions (GVF), for $\pi$ ps sampling      168—169 181
Generalized variance functions (GVF), for nonlinear estimators      169—170
Generalized variance functions (GVF), for srs wor      166—167 171—172 199
Generalized variance functions (GVF), for srs wr      163—166 195
Generalized variance functions (GVF), generalized      159—160
Generalized variance functions (GVF), in multistage sampling      210—211 213
Generalized variance functions (GVF), in presence of nonresponse      184 187—189 193
Generalized variance functions (GVF), in stratified sampling      172—181
Generalized variance functions (GVF), justification for      274 277
Generalized variance functions (GVF), log-log plot      280
Generalized variance functions (GVF), model fitting      288
Generalized variance functions (GVF), negative estimates      279
Generalized variance functions (GVF), number of groups for      162
Generalized variance functions (GVF), pseudovalue      152—153 163 166—168 170—172 174 182 191
Generalized variance functions (GVF), transformation for      63
Geometric mean      246—247
Geometric mean, estimation of variance for      246
Greco-Latin square      132
GREG estimator      see “Generalized regression estimator”
GVF      see “Generalized variance functions”
Hadamard matrices      6 112—113 367—368
Health Examination Survey      138 143
Hot-deck imputation      418—420 422 424—425 427
Ideal bootstrap estimator      195 211 213 215 220 381
Imputation variance      416 423—425
Inclusion probability      7 43 81—82 87 89 94—95 103 122 144 168 204 249 257
Interpenetrating samples      see “Random groups”
Interval estimates      see “Confidence interval”
Jackknife method      107 151—193
Jackknife method, ANOVA decomposition      156—157
Jackknife method, asymptotic properties      117 154 162 183 232 355 370 389
Jackknife method, basic estimator      5 89 144 302 347
Jackknife method, bias reduction      151 158 176
Jackknife method, for $\pi$ ps sampling      168—169 181
Jackknife method, for nonlinear estimators      169—170
Jackknife method, for srs wor      166—167 171—172 199
Jackknife method, for srs wr      163—166 195
Jackknife method, generalized      159—160
Jackknife method, in multistage sampling      210—211 213
Jackknife method, in presence of nonresponse      184 187—189 193
Jackknife method, in stratified sampling      172—181
Jackknife method, number of groups for      162
Jackknife method, pseudovalue      152—153 163 166—168 170—172 174 182 191
Jackknife method, transformation for      63
kurtosis      58—73
Liapounov      373
Linearization      see “Taylor series method”
Logistic regression      216 265—266
Mean imputation      418 420 422 429
Mean square error      3 203—233 238 250 304 320 322 345 354 392 417
Measurement error      5 24 398—404 406 409
Measurement error, correlated component      402—404 406 409
Measurement error, effect on sample mean      418 420 427
Measurement error, effect on variance estimator      396—397 402 404
Measurement error, for $\pi$ ps sampling      48 209
Measurement error, model for      152 274 199 332 369
Measurement error, random groups for      404
Measurement error, response variance      399 400 402—403 406 408—409
Measurement error, sample copy      402
Measurement error, total variance      404—405
Measurement process      22—25 35
Median      161 187 321—322
Mirror — Match variant      202
Monte Carlo bootstrap      215
MSE      see “Mean square error”
Multilevel analysis      269 271
Multiple imputation      425—430
Multiply-adjusted imputation      427
Multipurpose surveys      61
Multistage sampling      27 33 46 48 88 113 117 123 210 221 250 427
National Crime Survey      247
National Longitudinal Survey of Youth      83 185 221
National Postsecondary Student Aid Study      294
Newton — Raphson iterations      216
NLSY97      see “National Longitudinal Survey of Youth”
Noncertainty stratum      87—88
Noncertainty stratum, noninformative      7
Nonresponse      2 5 19 22 24 81 97 138 144 148 184 187—189 191 193 221 249—250 257 264 279
Nonresponse-adjusted weights      19
Nonsampling errors      6
Nonself-representing PSU      93 96 144 279
NSR PSU      see “Nonself-representing PSU”
Order in probability      227—228
Ordinary least squares regression      216 271
PARAMETER      274 277—280 303—305 354 356—357 363 365 370—371 375 382 385—386 388 398 420
Pivotal statistic      376—378 380
Population      2 6 8 340 347
Poststratification      2 20 24 148 184 200 257—258
Poststratification-adjusted weights      20
Pps wr      see “Probability proportional to size with replacement sampling”
PRECISION      1 57—61 107 125—127 162
Precision, coefficient of variation (CV) criteria      57—58 61 90
Precision, confidence interval criteria      55
Prediction theory approach      9
Primary sampling unit (PSU)      12 27 33 50 54—55 87 93 113
Probability measure      7
Probability per draw      10
Probability proportional to size with replacement sampling      10 165
Pseudoreplication      see “Balanced half-sample method”
Pseudovalues      see “Jackknife method”
PSU      see “Primary sampling unit”
Quasirange      see “Range”
Quenouille's estimator      see “Jackknife method”
Raking-ratio estimator (RRE estimator)      264
Random group method      21—22 27 44 73 83 88 97 103 107 195
Random group method, asymptotic theory      217 370 374 380
Random group method, basic rules for      81 89 94 108 113 131
Random group method, for multistage sampling      88 123
Random group method, general estimation procedure      33
Random group method, independent case      170
Random group method, linear estimators      16 17 25 36 40—41 80 84—85 116 169—170 174 196 217
Random group method, nonindependent case      73 83 170
Random group method, number of      38 60 83 355 365
Random group method, transformations for      384
RANGE      63—64 66—67 195 288 333
Recipient      295 419 430
Regression      22 50 53 56 116 119 156 172—173 216—219 249—250
Regression coefficient      3 8 116 119 156 172 245a 249—250 253 255 265—267 271 357 370
Regression coefficient, Taylor series estimate of variance      246
Replicate weights      41 45 81 138 184—185 187—188 216—217 225 366 423 431
Replication      107
Rescaling variant      200 206 208
Response error      see “Measurement error”
Retail Trade Survey      86—91 235 241
RG      see “Random group method”
RG estimator      360
Sample design      5 95 185 241 357 360 364—365 370
Sample median      161
Sample size      7
SASS      see “Schools and Staffing Survey”
Schools and Staffing Survey      288
Second order      7
Self-representing PSU      33 93—94 146
Simple random sampling with replacement (srs wr)      113 163 196
Simple random sampling without replacement (srs wor)      2 11 17
Simplicity of variance estimators      3—5 317—318
Size of population      7
SMSA (Standard Metropolitan Statistical Area)      93
Software for variance calculations      410
Software for variance calculations, benchmark data sets      413—415
Software for variance calculations, characteristics of      415
Software for variance calculations, environment for      415
SR PSU      see “Self-representing PSU”
Srs wor      see “Simple random sampling without replacement”
Srs wr      see “Simple random sampling with replacement”
Standard Metropolitan Statistical Areas      see “SMSA”
Standard variance estimators      5
Stratified sampling      172—181; see also “Collapsed stratum estimator”
Student's t distribution      377 385 426
Survey Research Methods Section      410
Survey weights      18 213 215 255 270
Sys      see “Systematic sampling”
Systematic sampling (sys)      6 27 33 41 48 144 185 298—308
Systematic sampling (sys), equal probability      27 102 144 298
Systematic sampling (sys), equal probability, alternative estimators of variance      115 117 250—254 298—299
Systematic sampling (sys), equal probability, empirical comparison of variance estimators      127 320 339
Systematic sampling (sys), equal probability, expected bias of variance estimators      259—261 308—309
Systematic sampling (sys), equal probability, expected MSE of variance estimators      259 304 315
Systematic sampling (sys), equal probability, multiple-start sampling      255—258 307—308
Systematic sampling (sys), equal probability, recommendations regarding variance estimation      282—283 356 384
Systematic sampling (sys), equal probability, superpopulation models for      259—265 308 315 322 332
Systematic sampling (sys), equal probability, variance of      250
Systematic sampling (sys), unequal probability      105 283—305 332—333 335 337
Systematic sampling (sys), unequal probability, alternative estimators of variance      287—290
Systematic sampling (sys), unequal probability, approximate fpc      169 288 338
Systematic sampling (sys), unequal probability, confidence interval coverage probabilities      302 354 363
Systematic sampling (sys), unequal probability, description of      284—286 374
Systematic sampling (sys), unequal probability, empirical comparison of variance estimators      291—302
Systematic sampling (sys), unequal probability, intraclass correlation      270—271 274 277 280 298
Systematic sampling (sys), unequal probability, recommendations about variance estimators      304—305 355
Systematic sampling (sys), unequal probability, relative bias of variance estimators      300 356
Systematic sampling (sys), unequal probability, relative MSE of variance estimators      301 356
Taylor series method      50 226—374
Taylor series method, asymptotic theory      353—364
Taylor series method, basic theorem      398
Taylor series method, convergence of      232—233
Taylor series method, second-order approximation      36 233
Taylor series method, transformations for      370—379
Taylor series method, variance approximation      224 226
Taylor series method, variance estimator      11 47 227—231
Taylor series method, variance estimator, easy computational algorithm      234 253
Taylor series method, variance estimator, for products and ratios      228—229
Taylor series method, variance estimator, with other variance methods      354
Textbook variance estimators      see “Standard variance estimators”
Thickened range      see “Range”
Time series models      313
Timeliness of variance estimators      3; see also “Cost of variance estimators”
Total variance      6; see also “Measurement error”
Transformations      384
Transformations, Bartlett's family of      386
Transformations, Box — Cox family of      388
Transformations, Z-transformation      389
U-statistics      155—156 158 375
Ultimate cluster method      33 83;
Unbiased estimators of variance      see “Standard variance estimators”
Weights      18—20 38 41 45 81 92 94—97 117 122 138 184 185 187—188 212 291 297 412
Yates — Grundy estimator of variance      46 49 206
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå