Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Wolter K.M. — Introduction to Variance Estimation
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Introduction to Variance Estimation
Àâòîð: Wolter K.M.
Àííîòàöèÿ: We live in the information age. Statistical surveys are used every day to determine or evaluate public policy and to make important business decisions. Correct methods for computing the precision of the survey data and for making inferences to the target population are absolutely essential to sound decision making. Now in its second edition, Introduction to Variance Estimation has for more than twenty years provided the definitive account of the theory and methods for correct precision calculations and inference, including examples of modern, complex surveys in which the methods have been used successfully.
The book provides instruction on the methods that are vital to data-driven decision making in business, government, and academe. It will appeal to survey statisticians and other scientists engaged in the planning and conduct of survey research, and to those analyzing survey data and charged with extracting compelling information from such data. It will appeal to graduate students and university faculty who are focused on the development of new theory and methods and on the evaluation of alternative methods. Software developers concerned with creating the computer tools necessary to enable sound decision-making will find it essential.
Prerequisites include knowledge of the theory and methods of mathematical statistics and graduate coursework in survey statistics. Practical experience with real surveys is a plus and may be traded off against a portion of the requirement for graduate coursework.
This second edition reflects shifts in the theory and practice of sample surveys that have occurred since the content of the first edition solidified in the early 1980s. Additional replication type methods appeared during this period and have featured prominently in journal publications. Reflecting these developments, the second edition now includes a new major chapter on the bootstrap method of variance estimation. This edition also includes extensive new material on Taylor series methods, especially as they apply to newer methods of analysis such as logistic regression or the generalized regression estimator. An introductory section on survey weighting has been added. Sections on Hadamard matrices and computer software have been substantially scaled back. Fresh material on these topics is now readily available on the Internet or from commercial sources.
Kirk Wolter is a Senior Fellow at NORC, Director of the Center for Excellency in Survey Research, and Professor in the Department of Statistics, University of Chicago. He is a Fellow of the American Statistical Association and a Member of the International Statistical Institute. He is a past president of the International Association of Survey Statisticians and a past chair of the Survey Research Methods Section of the American Statistical Association. During the last 35 years, he has participated in the planning, execution, and analysis of large-scale complex surveys and has provided instruction in survey statistics both in America and around the world.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 2nd edition
Ãîä èçäàíèÿ: 2006
Êîëè÷åñòâî ñòðàíèö: 447
Äîáàâëåíà â êàòàëîã: 02.07.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
-method see “Taylor series”
AAPOR see “American Association for Public Opinion Research”
Accuracy 3—4 162 170 280 355—356
Accuracy, of variance estimate 3 354—355 365
American Association for Public Opinion Research 19
American Statistical Association 410
ASA see “American Statistical Association”
B&B see “Baccalaureate and Beyond Longitudinal Study”
Baccalaureate and Beyond Longitudinal Study 290 294
Balanced half-sample method 113 115—116 146 354 367
Balanced half-sample method, alternate ascending order 126
Balanced half-sample method, asymptotic theory 25 217
Balanced half-sample method, for 180 214 373
Balanced half-sample method, for multistage sampling 27 33 46 48 88 113 117 123 210—213 221 250 427—428
Balanced half-sample method, for nonlinear estimators 25—26 50 85 116—121 142 169—170 214—215
Balanced half-sample method, for srs wr 165—166 208 307 379
Balanced half-sample method, for without replacement sampling 11 16 46 56 60 83 116 19 121—122 166
Balanced half-sample method, nearly equal sum 126
Balanced half-sample method, partial balancing 123 125 127—128 138 140 365
Balanced half-sample method, semiascending order 126
Balanced half-sample method, transformations for 63 363 384—387
Balanced repeated replication see “Balanced half-sample method”
Base weights 264
BHS see “Balanced half-sample method”
boot see “Bootstrap”
Bootstrap 194—217
Bootstrap estimator of variance 197 200 203 205—206 208—209 211 213—217 220 380—382
Bootstrap replicate 195 201—202 204 207 211—212 214—217
Bootstrap sample 195—211
Bootstrap, BWO variant 201
Bootstrap, BWR variant 201
Bootstrap, Correction factor variant 200 206 208
Bootstrap, Mirror — Match variant 202
Bootstrap, rescaling variant 200 206 208
BRR see “Balanced repeated replication”
Capture-recapture estimator 190—191
Case weights see “Weights”
Certainty stratum 87—88 240
CES see “Consumer Expenditure Survey”
Characteristic of interest 7—8 18 290 321—322 382 402 417
Clusters see “”primary sampling unit
Collapsed stratum estimator 50—57 97 127—128 146
Collapsed stratum estimator, alternatives to 54
Commodity Transportation Survey 102—105
Complementary half sample 115
Complex sample survey 2—4 21 25 60 179 221 231 354 369—370 388 410
Components of variance 48 54 146 355 409
Composite estimator 91 235 237 239
Confidence interval 24—25 32 107 217 294 298—299 308 315 320 322 346—347 351—358 362—364 388—389 391 393
Consumer Expenditure Survey 92—99 241 359—360 391
Controlled selection 55 93 97 143 146 279
Convergence 332—333
Convergence, in distribution 333
Convergence, in probability 333
Correlation coefficient 3 22 116 119 151 156 226 270—271 300 302 313 340 357 359 384 389 397
Correlation coefficient, asymptotic theory for 389
Cost of variance estimators 3 302 338
cps see “Current Population Survey”
CTS see “Commodity Transportation Survey”
Current Population Survey (CPS) 55 93 107 143 189 258 273—274 278—279 320 356
Customary variance estimators see “Standard variance estimators”
Design effect 275 277 280 288 290—295 297
Distribution function 9 152—153 194 382—383
Distribution function, Bernoulli 62
Distribution function, beta 67
Distribution function, discrete uniform 63
Distribution function, exponential 72
Distribution function, gamma 70
Distribution function, logarithmic series 65
Distribution function, mixed uniform 72
Distribution function, normal 24—25 69 73 139
Distribution function, poisson 64
Distribution function, standard Weibull 71
Distribution function, triangular 68
Distribution function, uniform 63 66 72
Donor 83 419 427 430
Double sampling 2 15 22 33
Double sampling designs 217
Dual-system estimator see “Capture recapture estimator”
Early Childhood Longitudinal Study-Kindergarten Class of 1998—99 253
ECLS-K see “Early Childhood Longitudinal”
ECLS-K, Study-Kindergarten Class of 1998—99
Economic Censuses 321
Estimator 1—6 8—19 21—30 32—74 81—86 88—91 94—97 103—104 107—111 113—125 127—131 137—142 144 146 148 151—154 156 158—184 187 190—221 226 229—232 234—241 244 247—253 257—278 289—293 298—309 313—317 335 337 345—346 352 403 407—408
Estimator, difference of ratios 116 140 173 244
Estimator, Horvitz — Thompson 10 12 19 46 50 85—86 89 103 121 140 144 168—169 204 209 236—237 249 260 273—274 299 335 337 345—346 352 403 407—408
Estimator, linear 16—18 23 25 36 40—41 84—86
Estimator, nonlinear 16 25 50 85—86 116
Estimator, of variance 10
Estimator, ratio 2 6 8 17—18 25 31—34 55 57 66 72—73 84 116 119—120 127 179 193 210 220 264
Estimator, Taylor series estimator of variance 237 247
Excess observations 33 38—40
Expectation 6 9 23—24 35 37 42
Finite population 6 18 22 25 43 46 56 62 73 120
Flexibility of variance estimators 354
Fractional imputation 429—431
Full orthogonal balance 112 120 122
Galois fields 137
Generalized regression estimator 261 263
Generalized variance functions (GVF) 6 272—290
Generalized variance functions (GVF), alternative functions 275
Generalized variance functions (GVF), applied to quantitative characteristics 273
Generalized variance functions (GVF), for ps sampling 168—169 181
Generalized variance functions (GVF), for nonlinear estimators 169—170
Generalized variance functions (GVF), for srs wor 166—167 171—172 199
Generalized variance functions (GVF), for srs wr 163—166 195
Generalized variance functions (GVF), generalized 159—160
Generalized variance functions (GVF), in multistage sampling 210—211 213
Generalized variance functions (GVF), in presence of nonresponse 184 187—189 193
Generalized variance functions (GVF), in stratified sampling 172—181
Generalized variance functions (GVF), justification for 274 277
Generalized variance functions (GVF), log-log plot 280
Generalized variance functions (GVF), model fitting 288
Generalized variance functions (GVF), negative estimates 279
Generalized variance functions (GVF), number of groups for 162
Generalized variance functions (GVF), pseudovalue 152—153 163 166—168 170—172 174 182 191
Generalized variance functions (GVF), transformation for 63
Geometric mean 246—247
Geometric mean, estimation of variance for 246
Greco-Latin square 132
GREG estimator see “Generalized regression estimator”
GVF see “Generalized variance functions”
Hadamard matrices 6 112—113 367—368
Health Examination Survey 138 143
Hot-deck imputation 418—420 422 424—425 427
Ideal bootstrap estimator 195 211 213 215 220 381
Imputation variance 416 423—425
Inclusion probability 7 43 81—82 87 89 94—95 103 122 144 168 204 249 257
Interpenetrating samples see “Random groups”
Interval estimates see “Confidence interval”
Jackknife method 107 151—193
Jackknife method, ANOVA decomposition 156—157
Jackknife method, asymptotic properties 117 154 162 183 232 355 370 389
Jackknife method, basic estimator 5 89 144 302 347
Jackknife method, bias reduction 151 158 176
Jackknife method, for ps sampling 168—169 181
Jackknife method, for nonlinear estimators 169—170
Jackknife method, for srs wor 166—167 171—172 199
Jackknife method, for srs wr 163—166 195
Jackknife method, generalized 159—160
Jackknife method, in multistage sampling 210—211 213
Jackknife method, in presence of nonresponse 184 187—189 193
Jackknife method, in stratified sampling 172—181
Jackknife method, number of groups for 162
Jackknife method, pseudovalue 152—153 163 166—168 170—172 174 182 191
Jackknife method, transformation for 63
kurtosis 58—73
Liapounov 373
Linearization see “Taylor series method”
Logistic regression 216 265—266
Mean imputation 418 420 422 429
Mean square error 3 203—233 238 250 304 320 322 345 354 392 417
Measurement error 5 24 398—404 406 409
Measurement error, correlated component 402—404 406 409
Measurement error, effect on sample mean 418 420 427
Measurement error, effect on variance estimator 396—397 402 404
Measurement error, for ps sampling 48 209
Measurement error, model for 152 274 199 332 369
Measurement error, random groups for 404
Measurement error, response variance 399 400 402—403 406 408—409
Measurement error, sample copy 402
Measurement error, total variance 404—405
Measurement process 22—25 35
Median 161 187 321—322
Mirror — Match variant 202
Monte Carlo bootstrap 215
MSE see “Mean square error”
Multilevel analysis 269 271
Multiple imputation 425—430
Multiply-adjusted imputation 427
Multipurpose surveys 61
Multistage sampling 27 33 46 48 88 113 117 123 210 221 250 427
National Crime Survey 247
National Longitudinal Survey of Youth 83 185 221
National Postsecondary Student Aid Study 294
Newton — Raphson iterations 216
NLSY97 see “National Longitudinal Survey of Youth”
Noncertainty stratum 87—88
Noncertainty stratum, noninformative 7
Nonresponse 2 5 19 22 24 81 97 138 144 148 184 187—189 191 193 221 249—250 257 264 279
Nonresponse-adjusted weights 19
Nonsampling errors 6
Nonself-representing PSU 93 96 144 279
NSR PSU see “Nonself-representing PSU”
Order in probability 227—228
Ordinary least squares regression 216 271
PARAMETER 274 277—280 303—305 354 356—357 363 365 370—371 375 382 385—386 388 398 420
Pivotal statistic 376—378 380
Population 2 6 8 340 347
Poststratification 2 20 24 148 184 200 257—258
Poststratification-adjusted weights 20
Pps wr see “Probability proportional to size with replacement sampling”
PRECISION 1 57—61 107 125—127 162
Precision, coefficient of variation (CV) criteria 57—58 61 90
Precision, confidence interval criteria 55
Prediction theory approach 9
Primary sampling unit (PSU) 12 27 33 50 54—55 87 93 113
Probability measure 7
Probability per draw 10
Probability proportional to size with replacement sampling 10 165
Pseudoreplication see “Balanced half-sample method”
Pseudovalues see “Jackknife method”
PSU see “Primary sampling unit”
Quasirange see “Range”
Quenouille's estimator see “Jackknife method”
Raking-ratio estimator (RRE estimator) 264
Random group method 21—22 27 44 73 83 88 97 103 107 195
Random group method, asymptotic theory 217 370 374 380
Random group method, basic rules for 81 89 94 108 113 131
Random group method, for multistage sampling 88 123
Random group method, general estimation procedure 33
Random group method, independent case 170
Random group method, linear estimators 16 17 25 36 40—41 80 84—85 116 169—170 174 196 217
Random group method, nonindependent case 73 83 170
Random group method, number of 38 60 83 355 365
Random group method, transformations for 384
RANGE 63—64 66—67 195 288 333
Recipient 295 419 430
Regression 22 50 53 56 116 119 156 172—173 216—219 249—250
Regression coefficient 3 8 116 119 156 172 245a 249—250 253 255 265—267 271 357 370
Regression coefficient, Taylor series estimate of variance 246
Replicate weights 41 45 81 138 184—185 187—188 216—217 225 366 423 431
Replication 107
Rescaling variant 200 206 208
Response error see “Measurement error”
Retail Trade Survey 86—91 235 241
RG see “Random group method”
RG estimator 360
Sample design 5 95 185 241 357 360 364—365 370
Sample median 161
Sample size 7
SASS see “Schools and Staffing Survey”
Schools and Staffing Survey 288
Second order 7
Self-representing PSU 33 93—94 146
Simple random sampling with replacement (srs wr) 113 163 196
Simple random sampling without replacement (srs wor) 2 11 17
Simplicity of variance estimators 3—5 317—318
Size of population 7
SMSA (Standard Metropolitan Statistical Area) 93
Software for variance calculations 410
Software for variance calculations, benchmark data sets 413—415
Software for variance calculations, characteristics of 415
Software for variance calculations, environment for 415
SR PSU see “Self-representing PSU”
Srs wor see “Simple random sampling without replacement”
Srs wr see “Simple random sampling with replacement”
Standard Metropolitan Statistical Areas see “SMSA”
Standard variance estimators 5
Stratified sampling 172—181; see also “Collapsed stratum estimator”
Student's t distribution 377 385 426
Survey Research Methods Section 410
Survey weights 18 213 215 255 270
Sys see “Systematic sampling”
Systematic sampling (sys) 6 27 33 41 48 144 185 298—308
Systematic sampling (sys), equal probability 27 102 144 298
Systematic sampling (sys), equal probability, alternative estimators of variance 115 117 250—254 298—299
Systematic sampling (sys), equal probability, empirical comparison of variance estimators 127 320 339
Systematic sampling (sys), equal probability, expected bias of variance estimators 259—261 308—309
Systematic sampling (sys), equal probability, expected MSE of variance estimators 259 304 315
Systematic sampling (sys), equal probability, multiple-start sampling 255—258 307—308
Systematic sampling (sys), equal probability, recommendations regarding variance estimation 282—283 356 384
Systematic sampling (sys), equal probability, superpopulation models for 259—265 308 315 322 332
Systematic sampling (sys), equal probability, variance of 250
Systematic sampling (sys), unequal probability 105 283—305 332—333 335 337
Systematic sampling (sys), unequal probability, alternative estimators of variance 287—290
Systematic sampling (sys), unequal probability, approximate fpc 169 288 338
Systematic sampling (sys), unequal probability, confidence interval coverage probabilities 302 354 363
Systematic sampling (sys), unequal probability, description of 284—286 374
Systematic sampling (sys), unequal probability, empirical comparison of variance estimators 291—302
Systematic sampling (sys), unequal probability, intraclass correlation 270—271 274 277 280 298
Systematic sampling (sys), unequal probability, recommendations about variance estimators 304—305 355
Systematic sampling (sys), unequal probability, relative bias of variance estimators 300 356
Systematic sampling (sys), unequal probability, relative MSE of variance estimators 301 356
Taylor series method 50 226—374
Taylor series method, asymptotic theory 353—364
Taylor series method, basic theorem 398
Taylor series method, convergence of 232—233
Taylor series method, second-order approximation 36 233
Taylor series method, transformations for 370—379
Taylor series method, variance approximation 224 226
Taylor series method, variance estimator 11 47 227—231
Taylor series method, variance estimator, easy computational algorithm 234 253
Taylor series method, variance estimator, for products and ratios 228—229
Taylor series method, variance estimator, with other variance methods 354
Textbook variance estimators see “Standard variance estimators”
Thickened range see “Range”
Time series models 313
Timeliness of variance estimators 3; see also “Cost of variance estimators”
Total variance 6; see also “Measurement error”
Transformations 384
Transformations, Bartlett's family of 386
Transformations, Box — Cox family of 388
Transformations, Z-transformation 389
U-statistics 155—156 158 375
Ultimate cluster method 33 83;
Unbiased estimators of variance see “Standard variance estimators”
Weights 18—20 38 41 45 81 92 94—97 117 122 138 184 185 187—188 212 291 297 412
Yates — Grundy estimator of variance 46 49 206
Ðåêëàìà