|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Cappe O., Ryden T., Moulines E. — Inference in Hidden Markov Models |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Measure, positive 599
Measure, probability 599
MEM algorithm see “SAME algorithm”
Metropolis — Hastings algorithm 171
Metropolis — Hastings algorithm, geometric ergodicity 542
Metropolis — Hastings algorithm, independent 173
Metropolis — Hastings algorithm, one-at-a-time 187
Metropolis — Hastings algorithm, phi-irreducibility 517
Metropolis — Hastings algorithm, random walk 176
Minimum description length 567
Missing information principle 459
Mixing distribution 448
Mixture density 448
Mixture Kalman filter 275
ML, MLE see “Maximum likelihood estimator”
Model averaging 483
Moderate deviations 562 578
Monte Carlo EM 394—395
Monte Carlo EM, analysis of 415—425
Monte Carlo EM, averaging in 403
Monte Carlo EM, in hidden Markov model 395
Monte Carlo EM, rate of convergence 422—425
Monte Carlo EM, simulation schedule 399—404
Monte Carlo EM, with importance sampling 398
Monte Carlo EM, with sequential Monte Carlo 398
Monte Carlo estimate 162
Monte Carlo integration 161
Monte Carlo steepest ascent 404
Neyman — Pearson lemma 564
NML see “Coding probability”
Noisy AR(1) model, SIS with optimal kernel 221—224
Noisy AR(1) model, SIS with prior kernel 218—220
Non-deterministic process 136
Normal hidden Markov model 13—15
Normal hidden Markov model, Gibbs sampling 476
Normal hidden Markov model, identifiability 450
Normal hidden Markov model, likelihood ratio testing in 461
Normal hidden Markov model, Metropolis — Hastings sampling 480
Normal hidden Markov model, prior for 471
Normal hidden Markov model, reversible jump MCMC 486
Normal hidden Markov model, SAME algorithm 498
Normalizing constant 211
Normalizing constant in accept-reject 169
Normalizing constant in Metropolis-Hastings 172—173
Occupation time of set 515
Occupation time of state 508
Optional sampling 584
Order 559
Order, estimator, BIC 581
Order, estimator, MDL 570
Order, estimator, PML 571
Order, identification 559
Order, Markov 560 561 563 581
Order, of hidden Markov model 560 561
Oscillation semi-norm 92
Oscillation semi-norm, essential 292
Particle filter 209 237
Penalized maximum likelihood 559 562 568
Perfect sampling 185
Period of irreducible Markov chain 514
Period of phi-irreducible HMM 553
Period of phi-irreducible Markov chain 535
Period of state in Markov chain 514
PML see “Penalized maximum likelihood”
Polish space 600
Posterior 65 71 358 466
Power 564
Power, function 564
Precision matrix 149
Prediction 54
Prior 64 71 358
Prior, conjugate 467
Prior, diffuse 148
Prior, Dirichlet 567
Prior, distribution 465
Prior, flat 150 469
Prior, for hidden Markov model 469—472
Prior, hyper- 468
Prior, hyperparameter 467
Prior, improper 150 468
Prior, non-informative 466 468
Prior, regularization 358
Prior, selection 467
Prior, subjective 466
Probability space 600
Probability space, filtered 37
Projection theorem 613
Proper set 299
Properly weighted sample 268
Radon — Nikodym derivative 210
Rao test 461
Rao — Blackwellization 182
Rauch — Tung — Striebel see “Smoothing”
Rayleigh — fading channel 18
Recurrent, set 517
Recurrent, state 508
Recursive estimation 372
Regeneration time 523
Regret 566
Regularization 358
Reprojection 416
Resampling, asymptotic normality 306
Resampling, consistency 303
Resampling, global 267
Resampling, in SMC 236—242
Resampling, multinomial 211—213
Resampling, multinomial, alternatives to 244—250
Resampling, multinomial, implementation of 242—244
Resampling, optimal 267—273
Resampling, remainder see “Residual”
Resampling, residual 245—246
Resampling, stratified 246—247
Resampling, systematic 248—250
Resampling, unbiased 244 268
Resolvent kernel see “Transition”
Return time 507 515
Reversibility 41
Reversibility in Gibbs sampler 181
Reversibility of Metropolis-Hastings 171
Reversibility of reversible jump MCMC 485
Reversible jump MCMC 482 484
Reversible jump MCMC, acceptance ratio 486
Reversible jump MCMC, birth move 486
Reversible jump MCMC, combine move 487—489
Reversible jump MCMC, death move 487
Reversible jump MCMC, merge move 487
Reversible jump MCMC, split move 487—489
Riccati equation 139
Riccati equation, algebraic 141
Robbins — Monro see “Stochastic approximation”
RTS see “Smoothing”
SAEM see “Stochastic approximation EM”
SAGE see “Expectation-maximization”
SAME algorithm 496
SAME algorithm for normal HMM 498
SAME algorithm in binary deconvolution model 500
Sample impoverishment see “Weight degeneracy”
Sampling importance resampling 211—214 295—310
| Sampling importance resampling, asymptotic normality 307
Sampling importance resampling, consistency 307
Sampling importance resampling, deviation bound 308
Sampling importance resampling, estimator 213
Sampling importance resampling, estimator, mean squared error of 213
Sampling importance resampling, estimator, unbiasedness 213
Score function 451
Score function, asymptotic normality 451—458
SEM see “Stochastic EM”
Sensitivity equations 361—365
Sequential Monte Carlo 209 214—231
Sequential Monte Carlo, for smoothing functionals 278—286
Sequential Monte Carlo, i.i.d. sampling 253 324
Sequential Monte Carlo, i.i.d. sampling, analysis of 324—332
Sequential Monte Carlo, i.i.d. sampling, asymptotic normality 325
Sequential Monte Carlo, i.i.d. sampling, asymptotic variance 326
Sequential Monte Carlo, i.i.d. sampling, consistency 325
Sequential Monte Carlo, i.i.d. sampling, deviation bound 328 330
Sequential Monte Carlo, implementation in HMM 214—218
Sequential Monte Carlo, mutation step 311—315
Sequential Monte Carlo, mutation step, asymptotic normality 313
Sequential Monte Carlo, mutation step, consistency 312
Sequential Monte Carlo, mutation/selection 255 316
Sequential Monte Carlo, mutation/selection, analysis of 319
Sequential Monte Carlo, mutation/selection, asymptotic normality 319
Sequential Monte Carlo, mutation/selection, consistency 319
Sequential Monte Carlo, optimal kernel 322
Sequential Monte Carlo, prior kernel 322
Sequential Monte Carlo, selection/mutation 253 255 316
Sequential Monte Carlo, selection/mutation, analysis of 320
Sequential Monte Carlo, selection/mutation, asymptotic normality 320
Sequential Monte Carlo, selection/mutation, consistency 320
Sequential Monte Carlo, SISR 322
Sequential Monte Carlo, SISR, analysis of 321—324
Sequential Monte Carlo, SISR, asymptotical normality 323
Sequential Monte Carlo, SISR, consistency 323
Sequential Monte Carlo, with resampling 231—242
Shannon — McMillan — Breiman theorem 61 562 568 569
Shift operator 39
Sieve 571
Simulated annealing 496
Simulated annealing, cooling schedule 496
SIR see “Sampling importance resampling”
SIS see “Importance sampling”
SISR see “Sequential Monte Carlo”
Slice sampler 183
Small set, existence 521
Small set, of hidden Markov model 552
Small set, of Markov chain 520
SMC see “Sequential Monte Carlo”
Smoothing 51 54
Smoothing, Bryson — Frazier 143
Smoothing, disturbance 143—146
Smoothing, fixed-interval 51 59—76
Smoothing, fixed-point 78—79
Smoothing, forward-backward 59
Smoothing, functional 278
Smoothing, in CGLSSM 156—158
Smoothing, in hierarchical HMM 87—89
Smoothing, in Markov-switching model 86
Smoothing, Rauch — Tung — Striebel 66 130
Smoothing, recursive 79—85
Smoothing, smoothing functional 80
Smoothing, two-filter formula 76 147—154
Smoothing, with Markovian decomposition, backward 70 124 130
Smoothing, with Markovian decomposition, forward 66
Source coding 559
Splitting construction 522—524
Splitting construction split chain 522
Stability in stochastic algorithms 416
State space 38
State-space model 3
State-space model, conditionally Gaussian linear 17—22 46 194—208 273—278
State-space model, Gaussian linear 15—17 126—154
Stationary distribution of hidden Markov model 553
Stationary distribution of Markov chain 511
Stein's lemma 575 578
Stochastic approximation 407
Stochastic approximation EM 410
Stochastic approximation EM, convergence of 429—430
Stochastic approximation, analysis of 425—429
Stochastic approximation, gradient algorithm 408
Stochastic approximation, rate of convergence 428—429
Stochastic approximation, Robbins — Monro form 408
Stochastic EM 412
Stochastic process 37
Stochastic process, adapted 38
Stochastic process, stationary 41
Stochastic volatility model 25—28
Stochastic volatility model, approximation of optimal kernel 227—228
Stochastic volatility model, EM algorithm 395
Stochastic volatility model, identifiability 450
Stochastic volatility model, one-at-a-time sampling 187—192
Stochastic volatility model, performance of SISR 239—240
Stochastic volatility model, single site sampling 183—184
Stochastic volatility model, smoothing with SMC 281
Stochastic volatility model, weight degeneracy 234—236
Stopping time 39
Strong mixing condition 105 108
Subspace methods 382
Sufficient statistic 350
Sweep see “Gibbs sampler”
Tangent filter 364
Target distribution 170
Tight see “Bounded in probability”
Total variation distance 91 93
Total variation distance, V-total variation 537
Transient, set (uniformly) 517
Transient, state 508
Transition, density function 35
Transition, kernel 35
Transition, kernel, Markov 35
Transition, kernel, resolvent 516
Transition, kernel, reverse 37
Transition, kernel, unnormalized 35
Transition, matrix 35
Triangular array 297
Triangular array, central limit theorems 338—342
Triangular array, conditionally i.i.d. 298
Triangular array, conditionally independent 298
Triangular array, laws of large numbers 333—338
Two-filter formula see “Smoothing”
UKF see “Kalman unscented
Uniform spacings 243
Universal Coding 559 561 565
Updating of hidden chain, global 475
Updating of hidden chain, local 476
V-total variation distance see “Total variation distance”
Variable dimension model 482
Viterbi algorithm 125
Wald test 461
Weight degeneracy 209 231—236
Weighted sample 298
Weighted sample, asymptotic normality 299 304
Weighted sample, consistency 298 301
Weighting and resampling algorithm 301
Well-log data model 20—21
Well-log data model with Gibbs sampler 203
Well-log data model with mixture Kalman filter 276
|
|
|
Ðåêëàìà |
|
|
|