Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Cappe O., Ryden T., Moulines E. — Inference in Hidden Markov Models
Cappe O., Ryden T., Moulines E. — Inference in Hidden Markov Models



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Inference in Hidden Markov Models

Àâòîðû: Cappe O., Ryden T., Moulines E.

Àííîòàöèÿ:

Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states.

In a unified way the book covers both models with finite state spaces, which allow for exact algorithms for filtering, estimation etc. and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Simulation in hidden Markov models is addressed in five different chapters that cover both Markov chain Monte Carlo and sequential Monte Carlo approaches. Many examples illustrate the algorithms and theory. The book also carefully treats Gaussian linear state-space models and their extensions and it contains a chapter on general Markov chain theory and probabilistic aspects of hidden Markov models.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1st edition

Ãîä èçäàíèÿ: 2005

Êîëè÷åñòâî ñòðàíèö: 654

Äîáàâëåíà â êàòàëîã: 02.07.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Measure, positive      599
Measure, probability      599
MEM algorithm      see “SAME algorithm”
Metropolis — Hastings algorithm      171
Metropolis — Hastings algorithm, geometric ergodicity      542
Metropolis — Hastings algorithm, independent      173
Metropolis — Hastings algorithm, one-at-a-time      187
Metropolis — Hastings algorithm, phi-irreducibility      517
Metropolis — Hastings algorithm, random walk      176
Minimum description length      567
Missing information principle      459
Mixing distribution      448
Mixture density      448
Mixture Kalman filter      275
ML, MLE      see “Maximum likelihood estimator”
Model averaging      483
Moderate deviations      562 578
Monte Carlo EM      394—395
Monte Carlo EM, analysis of      415—425
Monte Carlo EM, averaging in      403
Monte Carlo EM, in hidden Markov model      395
Monte Carlo EM, rate of convergence      422—425
Monte Carlo EM, simulation schedule      399—404
Monte Carlo EM, with importance sampling      398
Monte Carlo EM, with sequential Monte Carlo      398
Monte Carlo estimate      162
Monte Carlo integration      161
Monte Carlo steepest ascent      404
Neyman — Pearson lemma      564
NML      see “Coding probability”
Noisy AR(1) model, SIS with optimal kernel      221—224
Noisy AR(1) model, SIS with prior kernel      218—220
Non-deterministic process      136
Normal hidden Markov model      13—15
Normal hidden Markov model, Gibbs sampling      476
Normal hidden Markov model, identifiability      450
Normal hidden Markov model, likelihood ratio testing in      461
Normal hidden Markov model, Metropolis — Hastings sampling      480
Normal hidden Markov model, prior for      471
Normal hidden Markov model, reversible jump MCMC      486
Normal hidden Markov model, SAME algorithm      498
Normalizing constant      211
Normalizing constant in accept-reject      169
Normalizing constant in Metropolis-Hastings      172—173
Occupation time of set      515
Occupation time of state      508
Optional sampling      584
Order      559
Order, estimator, BIC      581
Order, estimator, MDL      570
Order, estimator, PML      571
Order, identification      559
Order, Markov      560 561 563 581
Order, of hidden Markov model      560 561
Oscillation semi-norm      92
Oscillation semi-norm, essential      292
Particle filter      209 237
Penalized maximum likelihood      559 562 568
Perfect sampling      185
Period of irreducible Markov chain      514
Period of phi-irreducible HMM      553
Period of phi-irreducible Markov chain      535
Period of state in Markov chain      514
PML      see “Penalized maximum likelihood”
Polish space      600
Posterior      65 71 358 466
Power      564
Power, function      564
Precision matrix      149
Prediction      54
Prior      64 71 358
Prior, conjugate      467
Prior, diffuse      148
Prior, Dirichlet      567
Prior, distribution      465
Prior, flat      150 469
Prior, for hidden Markov model      469—472
Prior, hyper-      468
Prior, hyperparameter      467
Prior, improper      150 468
Prior, non-informative      466 468
Prior, regularization      358
Prior, selection      467
Prior, subjective      466
Probability space      600
Probability space, filtered      37
Projection theorem      613
Proper set      299
Properly weighted sample      268
Radon — Nikodym derivative      210
Rao test      461
Rao — Blackwellization      182
Rauch — Tung — Striebel      see “Smoothing”
Rayleigh — fading channel      18
Recurrent, set      517
Recurrent, state      508
Recursive estimation      372
Regeneration time      523
Regret      566
Regularization      358
Reprojection      416
Resampling, asymptotic normality      306
Resampling, consistency      303
Resampling, global      267
Resampling, in SMC      236—242
Resampling, multinomial      211—213
Resampling, multinomial, alternatives to      244—250
Resampling, multinomial, implementation of      242—244
Resampling, optimal      267—273
Resampling, remainder      see “Residual”
Resampling, residual      245—246
Resampling, stratified      246—247
Resampling, systematic      248—250
Resampling, unbiased      244 268
Resolvent kernel      see “Transition”
Return time      507 515
Reversibility      41
Reversibility in Gibbs sampler      181
Reversibility of Metropolis-Hastings      171
Reversibility of reversible jump MCMC      485
Reversible jump MCMC      482 484
Reversible jump MCMC, acceptance ratio      486
Reversible jump MCMC, birth move      486
Reversible jump MCMC, combine move      487—489
Reversible jump MCMC, death move      487
Reversible jump MCMC, merge move      487
Reversible jump MCMC, split move      487—489
Riccati equation      139
Riccati equation, algebraic      141
Robbins — Monro      see “Stochastic approximation”
RTS      see “Smoothing”
SAEM      see “Stochastic approximation EM”
SAGE      see “Expectation-maximization”
SAME algorithm      496
SAME algorithm for normal HMM      498
SAME algorithm in binary deconvolution model      500
Sample impoverishment      see “Weight degeneracy”
Sampling importance resampling      211—214 295—310
Sampling importance resampling, asymptotic normality      307
Sampling importance resampling, consistency      307
Sampling importance resampling, deviation bound      308
Sampling importance resampling, estimator      213
Sampling importance resampling, estimator, mean squared error of      213
Sampling importance resampling, estimator, unbiasedness      213
Score function      451
Score function, asymptotic normality      451—458
SEM      see “Stochastic EM”
Sensitivity equations      361—365
Sequential Monte Carlo      209 214—231
Sequential Monte Carlo, for smoothing functionals      278—286
Sequential Monte Carlo, i.i.d. sampling      253 324
Sequential Monte Carlo, i.i.d. sampling, analysis of      324—332
Sequential Monte Carlo, i.i.d. sampling, asymptotic normality      325
Sequential Monte Carlo, i.i.d. sampling, asymptotic variance      326
Sequential Monte Carlo, i.i.d. sampling, consistency      325
Sequential Monte Carlo, i.i.d. sampling, deviation bound      328 330
Sequential Monte Carlo, implementation in HMM      214—218
Sequential Monte Carlo, mutation step      311—315
Sequential Monte Carlo, mutation step, asymptotic normality      313
Sequential Monte Carlo, mutation step, consistency      312
Sequential Monte Carlo, mutation/selection      255 316
Sequential Monte Carlo, mutation/selection, analysis of      319
Sequential Monte Carlo, mutation/selection, asymptotic normality      319
Sequential Monte Carlo, mutation/selection, consistency      319
Sequential Monte Carlo, optimal kernel      322
Sequential Monte Carlo, prior kernel      322
Sequential Monte Carlo, selection/mutation      253 255 316
Sequential Monte Carlo, selection/mutation, analysis of      320
Sequential Monte Carlo, selection/mutation, asymptotic normality      320
Sequential Monte Carlo, selection/mutation, consistency      320
Sequential Monte Carlo, SISR      322
Sequential Monte Carlo, SISR, analysis of      321—324
Sequential Monte Carlo, SISR, asymptotical normality      323
Sequential Monte Carlo, SISR, consistency      323
Sequential Monte Carlo, with resampling      231—242
Shannon — McMillan — Breiman theorem      61 562 568 569
Shift operator      39
Sieve      571
Simulated annealing      496
Simulated annealing, cooling schedule      496
SIR      see “Sampling importance resampling”
SIS      see “Importance sampling”
SISR      see “Sequential Monte Carlo”
Slice sampler      183
Small set, existence      521
Small set, of hidden Markov model      552
Small set, of Markov chain      520
SMC      see “Sequential Monte Carlo”
Smoothing      51 54
Smoothing, Bryson — Frazier      143
Smoothing, disturbance      143—146
Smoothing, fixed-interval      51 59—76
Smoothing, fixed-point      78—79
Smoothing, forward-backward      59
Smoothing, functional      278
Smoothing, in CGLSSM      156—158
Smoothing, in hierarchical HMM      87—89
Smoothing, in Markov-switching model      86
Smoothing, Rauch — Tung — Striebel      66 130
Smoothing, recursive      79—85
Smoothing, smoothing functional      80
Smoothing, two-filter formula      76 147—154
Smoothing, with Markovian decomposition, backward      70 124 130
Smoothing, with Markovian decomposition, forward      66
Source coding      559
Splitting construction      522—524
Splitting construction split chain      522
Stability in stochastic algorithms      416
State space      38
State-space model      3
State-space model, conditionally Gaussian linear      17—22 46 194—208 273—278
State-space model, Gaussian linear      15—17 126—154
Stationary distribution of hidden Markov model      553
Stationary distribution of Markov chain      511
Stein's lemma      575 578
Stochastic approximation      407
Stochastic approximation EM      410
Stochastic approximation EM, convergence of      429—430
Stochastic approximation, analysis of      425—429
Stochastic approximation, gradient algorithm      408
Stochastic approximation, rate of convergence      428—429
Stochastic approximation, Robbins — Monro form      408
Stochastic EM      412
Stochastic process      37
Stochastic process, adapted      38
Stochastic process, stationary      41
Stochastic volatility model      25—28
Stochastic volatility model, approximation of optimal kernel      227—228
Stochastic volatility model, EM algorithm      395
Stochastic volatility model, identifiability      450
Stochastic volatility model, one-at-a-time sampling      187—192
Stochastic volatility model, performance of SISR      239—240
Stochastic volatility model, single site sampling      183—184
Stochastic volatility model, smoothing with SMC      281
Stochastic volatility model, weight degeneracy      234—236
Stopping time      39
Strong mixing condition      105 108
Subspace methods      382
Sufficient statistic      350
Sweep      see “Gibbs sampler”
Tangent filter      364
Target distribution      170
Tight      see “Bounded in probability”
Total variation distance      91 93
Total variation distance, V-total variation      537
Transient, set (uniformly)      517
Transient, state      508
Transition, density function      35
Transition, kernel      35
Transition, kernel, Markov      35
Transition, kernel, resolvent      516
Transition, kernel, reverse      37
Transition, kernel, unnormalized      35
Transition, matrix      35
Triangular array      297
Triangular array, central limit theorems      338—342
Triangular array, conditionally i.i.d.      298
Triangular array, conditionally independent      298
Triangular array, laws of large numbers      333—338
Two-filter formula      see “Smoothing”
UKF      see “Kalman unscented
Uniform spacings      243
Universal Coding      559 561 565
Updating of hidden chain, global      475
Updating of hidden chain, local      476
V-total variation distance      see “Total variation distance”
Variable dimension model      482
Viterbi algorithm      125
Wald test      461
Weight degeneracy      209 231—236
Weighted sample      298
Weighted sample, asymptotic normality      299 304
Weighted sample, consistency      298 301
Weighting and resampling algorithm      301
Well-log data model      20—21
Well-log data model with Gibbs sampler      203
Well-log data model with mixture Kalman filter      276
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå