Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Holmes M.H. — Introduction to Perturbation Methods
Holmes M.H. — Introduction to Perturbation Methods



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Introduction to Perturbation Methods

Автор: Holmes M.H.

Аннотация:

This book is an introductory graduate text dealing with many of the perturbation methods currently used by applied mathematicians, scientists, and engineers. The author has based his book on a graduate course he has taught several times over the last ten years to students in applied mathematics, engineering sciences, and physics. The only prerequisite for the course is a background in differential equations. Each chapter begins with an introductory development involving ordinary differential equations. The book covers traditional topics, such as boundary layers and multiple scales. However, it also contains material arising from current research interest. This includes homogenization, slender body theory, symbolic computing, and discrete equations. One of the more important features of this book is contained in the exercises. Many are derived from problems of up- to-date research and are from a wide range of application areas.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 356

Добавлена в каталог: 01.07.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Projectile problem, Maple commands for      45
Pseudo-inverse of matrix      26
Quadratic equations      18—22
Quantization condition      181
Quantum jump equation      116
Rankin — Hugoniot condition      92
Ray      199
Ray methods, WKB method and      197—202
Ray-tracing problem      201
Rayleigh oscillator, equation for      122 270
Rayleigh — Schrodinger series      26
Reduced wave equation      198
Reduction using method of homogenization      242—243
Relaxation dynamics      264—268
Relaxation oscillation      269
Resonance, forced motion near      123—127
Reynolds equation      66
Reynolds transport theorem      244
Riccati equation      267
Rotating wave approximation      116
Routh — Hurwitz criterion      291
Saddle-node bifurcation      255
Scale functions      9
Scaling variables      2 34 36 211
Schlogl model      280
Schrodinger equation      34 180 182
Secondary bifurcation      255
Secular term      106 107
Secular term, avoiding      110
Sel'kov model      292
Self-sustained oscillation      281
Semiconvergent series      13
Shock solution      72
Singular perturbation problems      48
Sinh-Poisson equation      29
Slender annulus approximation      36
Slender body approximations, scaling and      36
Slender body approximations, wave propagation and      190—196
Slow scale      225
Slowly varying coefficients      117—120
Small disturbance theory      36—37 98
Solvability condition      192 273
Sommerfeld radiation condition      208
Spikes      72 73
Stability analysis, linearized      274—275
Stability theory, linear      249
Stability, asymptotic      257
Stability, exchange of      257
Stability, global asymptotic      257
Stability, linearized      255—259
Stability, of branches bifurcating from zero solution      276—277
Stability, of zero solution      275—276
Stable solutions      258
Stationary phase approximation      306—307
Steady-state bifurcation      249
Steady-state solutions      272—274
Stick-slip problem      130—131
Stirling numbers      221
Stirling series      171
Stokes problem, forced      242
Strained coordinates, method of      111
Stretched variables      78
Stretching transformation      50
String equation, damped      134 137 139
String equation, energy      136 279
String equation, nonlinear      137 151
Subcritical bifurcation      255
Subharmonic oscillation      127
Substructure, homogenized coefficients and      237
Substructure, periodic      231 234—239
Supercritical bifurcation      255
Superharmonic oscillation      127
Supersonic air flow      49
Switchbacking      56
Switching mechanism, biological      270
SWKB method      184
Symbolic computing      43—45
Tangency points      87
Tangent bifurcation      255
Taylor polynomials      10
Taylor's theorem      3
Terms, balancing      19
Thermometer, acoustic      207
Time scales, fast      117
Time scales, possible      111—112
Time scales, slow      109
Time scales, three      110—111
Time scales, two      108
Transcendental equations, asymptotic approximations of      21—22
Transcendentally small      5 11
Transformation, stretching      50
Transition layers, nonmonotone      72 73
Transition layers, solutions in      174—175
Transition region, between inner and Transition region, outer layers      52—53
Transition region, matching and      175—176
Transition region, solution in      193—194
Transition-layer coordinate      193
Transition-layer equations, solution and properties of      297—303
Transport equation      163
Transversality condition      284
Traveling waves, multiple scales for      139—141
Triode circuits      282
Tunneling, phenomenon of      182
Turning point interval      214
Turning points      77 164 173—180 215—218
Turning points, higher-order      302—303
Two-timing method      111
Ultraharmonic oscillation      127
Unbuckled state      278
Uniform asymptotic approximations      37—42
Uniformly valid asymptotic approximations      38
van der Pol equation      129 269 281
Variables, hidden      239
Variables, intermediate      53
Variables, scalar      40
Variables, scaling      2
Variables, stretched      78
Variables, vector      40
Vibrations, maintained      269—270
Viscoelasticity, nonlinear      280—281
Volterra delay equation      286
Watson's lemma      306
Wave approximations, parabolic      207—211
Wave approximations, rotating      116
Wave fronts      198
Wave propagation, energy methods and      185—188
Wave propagation, slender body approximations and      190—196
Wave solutions      186—187
Waves, nonlinear      142—148
Waves, traveling, multiple scales for      139—141
Webster horn equation      188
Well-ordered functions      9
Wentzel — Kramers — Brillouin method      see “WKB method”
Westervelt equation      153
Wigner function      142
WKB method      120 161—218
WKB method, application of      185
WKB method, characteristic of      167
WKB method, discrete      212—218
WKB method, history of      162
WKB method, introductory example      162—167
WKB method, nonlinear      167
WKB method, physical interpretation of      188
WKB method, quantization condition      181
WKB method, ray methods and      197—202
WKBJ method      161
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте