Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Serre J.P. — Algebraic Groups and Class Fields
Serre J.P. — Algebraic Groups and Class Fields

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebraic Groups and Class Fields

Автор: Serre J.P.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 224

Добавлена в каталог: 30.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\mathfrak{M}$-equivalent      V.2
Arithmetic genus      IV.7
Artin — Hasse exponential      V.16
Artin — Schreier theory      I.2 VI.9
Canonical class      II.9 IV.8
Class field theory      VI.16
Class formation      VI.31
Class of divisors      II.3
Class of repartitions      II.5
Conductor (of a covering)      VI.12
Conductor (of a singular curve)      IV.1
Cusp      IV.4
Cycle class group      VI.16
Decomposable cohomology class      VII.14
Decomposed prime cycle      VI.22
Descent of the base field      V.20
Double point      IV.4
Duality theorem      II.10
Duality theorem on a non-singular curve      II.8
Duality theorem on a singular curve      IV.10
Explicit reciprocity law      VI.30
Extensions of algebraic groups      VII.1
Factor systems      VII.4
Frobenius substitution      VI.22
Genus of a non-singular curve      II.4
Genus of a non-singular curve, arithmetic      IV.7
Homogeneous space      V.21
Homological torsion      VII.22
Idele      III.1
Idele classes      VI.29
Kernel (of a morphism)      VI.13
Kuenneth formula      VII.17
Kummer theory      I.2 VI.9
Linear series      II.3
Local symbol      III.1
Maximal map      VI.13
Modulus (on a curve)      I.1 III.1
Morphism (of a principal homogeneous space)      VI.13
Period (of a commutative group)      VII.10
Plucker formula      IV.7
Prime cycle      VI.22
Primitive cohomology class      VII.14
Principal homogeneous space      V.21
Projective system (attached to a variety)      VI.13
Purely inseparable map      V.10
Quadric      IV.8
Quotient of a variety by a finite group      III.12
Rational divisor over a field      V.1
Rational point over a field      V.1
Reciprocity map      VI.25
Regular differential (on a singular curve)      IV.9
Repartition      II.5
Residue (of a differential on a curve)      II.7
Residue (of a differential on a surface)      IV.8
Riemann — Roch theorem (on a non-singular curve)      II.4 II.9
Riemann — Roch theorem (on a singular curve)      IV.6 IV.11
Riemann — Roch theorem (on a surface)      IV.8
Segre formula      IV.8
Separable map      V.10
Sky-scraper sheaf      II.5
Strictly exact sequence      VII.1
Support of a modulus      IV.4
Surjective (generically)      V.10
Symmetric product      III.14
Trace (of a differential)      II.12
Trace (of a map to a group)      II.2
Trace (of cycle classes)      VI.21
Type $\alpha$, extension of      VI.19
Uniformiser, local      II.12
Unipotent group      III.7
Unramified covering      VI.7
Witt group      I.2 VII.8
Zeta function      VI.3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте