Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dong F.M., Teo K.L., Koh K.M. — Chromatic Polynomials And Chromaticity Of Graphs
Dong F.M., Teo K.L., Koh K.M. — Chromatic Polynomials And Chromaticity Of Graphs

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Chromatic Polynomials And Chromaticity Of Graphs

Авторы: Dong F.M., Teo K.L., Koh K.M.

Аннотация:

This is the first book to comprehensively cover chromatic polynomials of graphs. It includes most of the known results and unsolved problems in the area of chromatic polynomials. Dividing the book into three main parts, the authors take readers from the rudiments of chromatic polynomials to more complex topics: the chromatic equivalence classes of graphs and the zeros and inequalities of chromatic polynomials. The early material is well suited to a graduate level course while the latter parts will be an invaluable resource for postgraduate students and researchers in combinatorics and graph theory.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2005

Количество страниц: 356

Добавлена в каталог: 25.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$C(n,m)$      37
$d(x,{A}_{i},{A}_{j})$      137
$H\;\ominus\;x$      153
$p(x,{A}_{i},{A}_{j})$      137
$\chi$-closed      55
$\chi$-equivalence class      55
$\chi$-equivalent      55
$\chi$-unique      55
$\lambda$-colouring      1
$\partial(G)$      221
$\Sigma$-polynomial      216
$\theta$-graph      XXI
$\theta({a}_{1},{a}_{2},...,{a}_{k})$      XXI
$\xi$-polynomial      88
${C}_{p}(n,m)$      42
${F}_{n}$      XXI
${g}_{p}(G)$      164
${K}_{r}$-gluing      7
${N}^{-}(S)$      142
${N}^{-}_{G}(S)$      142
${n}_{g}$-equivalent      125
${n}_{g}$-unique      125
${n}_{G}(Q)$      218
${P}_{k}$-gluing      116
${r}_{c}(G)$      291
${W}_{n,s}^{(5)}$      190
${W}_{n,s}^{(6)}$      190
${W}_{n}$      XXI
${W}_{n}({m}_{1}, {m}_{2}, ..., {m}_{k},)$      18
${W}_{n}^{(4)}$      190
${\cal G}[{G}_{1}\;{\cup}_{r}\;{G}_{2}]$      7
${\cal G}_{os}$      296
${\cal J}(n,m)$      37
${\cal L}(n,m)$      37
${\cal L}_{p}(n,m)$      42
${\cal T}$      134
${\cal T}_{r}$      134
${\cal T}_{t}(G)$      137
${\chi}^{a}(G)$      135
${\theta}_{k}$      XXI
${\theta}_{k}(f)$      297
(c, n, m)-graph      41
Acyclic      XIX
Acyclic chromatic number      135
Acyclic orientation      20
Acyclic r-colourable      135
Adj-invariant      226
Adjacent edges      XVI
Adjacent vertices      XVI
Adjoint closure      239
Adjoint polynomial      216
Adjointly closed      233
Adjointly equivalent      216
Adjointly unique      216
Automorphism of a graph      XVII
Bari — Hall's broken-cycle formula      29
Beraha number      259
Bipartite graph      XX
Bipartition      XX
Block      XXII
Block-graph      202
Boltzmann weight      300
Bridge      XXII
Broken wheel      18
Broken-cycle      27
Cartesian product      XXI
Chain      XVIII
Chain-contraction      105
Chord      XVIII
Chordal graph      XIX
Chromatic number      XXIII
Chromatic polynomial      V
Chromatic root      249
Chromatically equivalent      55
Chromatically unique      55
Chromaticity      55
CLIQUE      XVI
CLIQUE COVER      217
Clique number      XVI
Clique-cut      XXII
Closed under minors      257
Closed walk      XVIII
Colour class      XXIII
Communication pair      110
Complement of a graph      XX
Complete graph      XIX
Complete i-partite graph      XX
Component      XVIII
Condition (CT)      179
Condition (T)      134
Connected graph      XVIII
Cubic graph      XVII
Cut      XXII
Cut-vertex      XXII
CYCLE      XVIII
Cycle-connected      53
Cyclomatic number      291
Degree      XVI
Degree sequence      XVI
Diameter of a graph      XIX
Dichromatic polynomial      301
Digon      261
Disconnected graph      XVIII
Disjoint union      XXI
Distance      XIX
Double subdivision      251
EDGE      XV
Edge set      XV
Edge-gluing      7
Edge-transitive      XVII
Empty graph      XIX
END      XVI
End-vert ex      XVI
Essential polynomial      119
Eulerian graph      XX
Even cycle      XIX
Even vertex      XVII
F-uniform subdivision      105
Face      XX
Fan      XXI
Forest      XIX
Forest-like graph      81
Fundamental Reduction Theorem      6
G-homeomorph      XXI
g.p. tree      109
Generalized $\theta$-graph      XXI
Generalized edge      251
Generalized polygon-tree      109
Generalized triangle      251
grid      85
H-with a bridge      71
Hamiltonian $H(\sigma)$      300
Hamiltonian path      XVIII
Homeomorphic graphs      105
Im(z)      291
incident      XVI
Independence number      XVI
Independent set      XVI
Infinite face      XX
Integral-root      273
Internally disjoint      XXII
Irreducible      241
Isolated vertex      XVI
Isomorphic graphs      XVII
Isomorphism      XVII
Join of two graphs      XXI
K-bridge graph      106
k-chromatic      XXIII
K-clique-cut      68
k-colourable      XXIII
k-colouring      XXII
k-critical      XXIII
K-cycle      XVIII
K-gon tree      75
K-partition number      87
k-regular graph      XVII
K-vertex-connected      XXII
Length of a walk      XVIII
Matching      XVI
Matching equivalent      244
Matching matrix      84
Matching polynomial      244
Matching unique      244
Maximal chain      XVIII
Maximum degree      XVII
Mean colour number      309
Minimum degree      XVII
Minor      257
Multi-bridge graph      XXI
Multigraph      XV
Multiplicative      220
Multiplicity of a root      23
Near-triangulation      259
Neighbour      XVI
Neighbourhood      XVI
Nullity      291
Odd cycle      XIX
Odd vertex      XVII
Odd-subdivided path      296
Order      XV
Outerplanar      XX
P-critical      69
Partition function      300
Path      XVIII
Perfect elimination ordering      142
Planar graph      XX
Plane drawing      XX
Polygon-tree      75
Proper digon      261
Proper subgraph      XVII
Pure cycle      XVIII
Pure path      156
q-state Potts model      301
Q-tree      XIX 144
R-independent partition      134
Rank      301
Re(z)      290
Regular graph      XVII
Root-free interval      249
Self-complementary      XXI
Separable graphs      251
Separating cycle      50
Simple graph      XV
Simplicial vertex      39
SIZE      XV
Spanning path      XVIII
Spanning subgraph      XVII
Special subgraph      217
Spin configuration      300
Spoke      XXI
Star      XX
Stirling numbers of the second kind      13
Strong Logarithmic Concavity Conjecture      49
Structural triple      124
Subdivided      XXI
Subdivision      XXI
Subgraph      XVII
T-partite graph      XIX
T-partition      XX
Trail      XVIII
TREE      XIX
Tree-width      258
triangle      XVIII
Triangulation      259
Tufan graph      XXIII
Tutte polynomial      301
Umbral product      1
Unicyclic      XIX
Unimodal conjecture      47
Uniquely k-colourable      XXIII
Upper root-free interval      256
Vertex      XV
Vertex set      XV
Vertex-connectivity      XXII
Vertex-gluing      7
Vertex-transitive      XVII
W(n,s)      XXI
Walk      XVIII
Wheel      XXI
Whitney's Broken-cycle Theorem      27
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте