Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sepanski R.M. — Compact Lie Groups
Sepanski R.M. — Compact Lie Groups



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Compact Lie Groups

Автор: Sepanski R.M.

Аннотация:

Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Included is the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The necessary Lie algebra theory is also developed in the text with a streamlined approach focusing on linear Lie groups.

Key Features: Provides an approach that minimizes advanced prerequisites, Self-contained and systematic exposition requiring no previous exposure to Lie theory, Advances quickly to the Peter-Weyl Theorem and its corresponding Fourier theory, Streamlined Lie algebra discussion reduces the differential geometry prerequisite and allows a more rapid transition to the classification and construction of representations, Exercises sprinkled throughout. This beginning graduate-level text, aimed primarily at Lie Groups courses and related topics, assumes familiarity with elementary concepts from group theory, analysis, and manifold theory. Students, research mathematicians, and physicists interested in Lie theory will find this text very useful.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2006

Количество страниц: 198

Добавлена в каталог: 19.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
integral      20
Integral, curve      83
Integral, submanifold      92
Interior multipliation      14
Intertwining operator      28 54
Invariant form      36
Inverse operator valued Fourier transform      73
Irreducible      36 54 113 115
Isotropic      30
Isotypic component      38 58 77
Iwasawa      7
j      6 85
Jacobi identity      82
Jacobian matrix      24
Killing form      124 130
Kostant, Multiplicity Formula      175
Kostant, partition function      175
Kronecker’s theorem      104
l(w)      148
Laplacian      30
Left invariant, vector field      81
Left invariant, volume form      21
Length      148
Lexicographic order      147
Lie, algebra      82
Lie, bracket      82 91
Lie, group      2
Lie, subgroup      3
Lifting property      10
Line bundle      179
Linear group      66
Local diffeomorphsim      84
Locally convex topological space      55
Lowest weight vector      154
M      1
Main involution      16
Manifold      1
Matrix, coefficient      47
Matrix, realization      35
Maximal torus      98
Maximal Torus Theorem      102
MC(G)      47
Modular function      22
Module      27
Multiplicity      38 175
N      136 178
n(w)      148
Negative roots      139
normalizer      94
O(N)      4
One-parameter group      90
Operator valued Fourier transform      73
Orientable      19
Orientation preserving      19
Orientation preserving, chart      19
Orientation reversing      19
Orthogonal group      4
P      130
Path connected      8
Peter — Weyl theorem      65
Plancherel theorem      73
Positive operator      56
Positive roots      139
Preserve fibers      176
Principal three-dimensional subalgebra      149
Projective space      2
Proper      36
Pull back      19
Quaternionic type      53
R      130
Radical      124
Rank      4 159
Real type      53
Reduced      148
Reducible      36 54
Reductive      108
Regular      101 156
Regular representation      61
Regular submanifold      3
Representation      27 54 113
Reproducing kernel      45
Restriction      42
Right invariant, volume form      21
Root      117
Root, lattice      130
Root, space decomposition      117
Rotation group      4
S      30
Scalar valued Fourier transform      76
Schur, lemma      36 55
Schur, orthogonality relations      48
Second countable      1
Section      176
Semisimple      108
sgn(w)      148
SIMPLE      108 121
Simple roots      139
Simply connected      10
Simply connected cover      10
Skew W-invariant      164
SO(N)      4
SO(p, q)      19
Sp(N)      5
Special linear group      4
Special orthogonal group      4
Special unitary group      5
Sphere      1
Spin representation      30
Spinors      30
Stabalizer      9
Standard basis      14 115 127
Standard representation      28 114
Standard triple      127
Steinberg’s Formula      176
Strictly dominant      167
Strictly upper triangular      108
SU(N)      5
Submanifold      2
Submodule      36 54
Subrepresentation      36 54
Symmetric algebra      34
Symplectic group      5
t'      139
T(M)      81
Tangent bundle      81
Tangent space      19
Tensor algebra      13
Topological vector space      54
Torus      1 97
Transitive      9
Triangular decomposition      151
Trivial representation      28 114
U(n)      4
Unitary      36
Unitary group      4
V*      34 114
Vector, bundle      176
Vector, field      81
Vector, valued integration      56
Volume form      20
w      136
W(G)      136
W-invariant      164
Weight      116
Weight lattice      130
Weight space decomposition      116
Weyl, chamber      140
Weyl, character formula      166 168
Weyl, Denominator Formula      168
Weyl, dimension formula      168
Weyl, group      136
Weyl, group, affine      172
Weyl, Integration Formula      161 165
Z(G)      7 102 104
[x, y]      82
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте