Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry
Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Introduction to Mobius Differential Geometry

Автор: Hertrich-Jeromin U.

Аннотация:

Hertrich-Jeromin introduces students to the geometry of surfaces and submanifolds in the conformal sphere using various models. He starts with "the Reimannian point of view" and proceeds to the projective model (with a brief description of sphere congruences and their envelopes) and two applications, the first for conformally flat hypersurfaces and the second for isothermic and Willmore surfaces. He continues by describing a quaternionic model and application and a Clifford algebra model and application, thoughtfully providing the classical model of Möbius geometry in table form for reference.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st edition

Год издания: 2003

Количество страниц: 413

Добавлена в каталог: 11.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Meridian curve      136f
Metric of a sphere congruence      55 299
Miguel's theorem      354 360
Minimal cousin      256 259 275
Minimal net      274
Minimal surface      119 129 132 196 209 212 218 252
Minimal surface of revolution      142
Minkowski space      37 155 306 308
Model of Moebius geometry      3
Moebius curvature      79
Moebius form      26
Moebius geometry      31 33
Moebius group      31f 43ff 157ff 287 307 315f
Moebius invariants      24 26
Moebius transformation      31 43ff 157ff 287 307 315f
Nilpotent endomorphism      306
Nonflat conformal geometry      381
Nonflat Moebius geometry      381
Normal congruence of circles      75 94
Normal connection      23 59
Normal curvature      23 59
Normal line congruence      96 98
Null coordinates      191
Order involution      283 310
Oriented hypersphere      38
Orthogonal algebra      280
Orthogonal intersection      39 44 291 318
Orthogonal system      6 69 85ff 93 95 334f 338ff
Outer space      36f
Parabolic isotropy subgroup      164
Parabolic sphere complex      42
Parabolic sphere pencil      41
Parallel surface      99f 197
Pauli matrices      149
Pencil congruence      168
Pentaspherical coordinates      36
Permutability theorem      184ff 246ff 261 270ff 334 356ff 361
Pin group      286 315
Pluecker formula      382
Pluecker quadric      279
Pluecker relations      279
Poincare ball model      15
Poincare half-space model      15
Point at infinity      42 49
Point pair      41 160ff 321
Point pair map      162 322f
Polar hyperplane      35 38
Polar reflection      43
Polarity      36 41 43f 155
Polarized surface      200
Pole      35
Principal curvature      60f 69 78
Principal direction      94
Principal frame      80
Principal net      261 350
Product manifold      22
Projective model      4 381
Projective transformation      43ff
Pseudo-orthonormal basis      56
Pseudodual basis      177
Pure k-vector      279
Pythagorean rule      91 203
Quadric of constant curvature      48f 60f 97 108 121 132 173f 245 309
Quasi-umbilic      67
Quaternion-valued 1-form      150
Quaternionic conjugation      149
Quaternionic function theory      382
Quaternionic general linear group      153
Quaternionic Hermitian form      146 154ff 171 305f
Quaternionic linear algebra      148ff
Quaternionic linear map      150
Quaternionic model      4
Quaternionic projective line      155
Quaternionic special linear group      153
Quaternionic vector bundle      382
Quaternionic vector space      150
Quaternions      148 281
RADIUS      37
Reductive homogeneous space      73 111 161 321
Retraction form      211 262ff 366ff 370
Ribaucour congruence of 2-spheres      222
Ribaucour pair      334f 341ff
Ribaucour property      350
Ribaucour sphere congruence      104 108 341
Ribaucour transformation      104 334f 341ff 350 356
Riccati equation      214f 374
Ricci equation      23 58
Ricci tensor      59
Riemann sphere      292
Riemann surface      19
Riemann — Roch theorem      382
Right vector space      150
Rigidity      104
Rodrigues' formula      60f
Root distribution      69
Rothe's form      117
S-isothermic surface      383
Scalar curvature      59
Schottky manifold      68
Schouten tensor      17 59 72 339
Schwarzian derivative      238
Second fundamental form      23 58f
Second-order deformation      230 268 370
Secondary Gauss map      275
Sectional curvature      17
Shape operator      67
Signature      280 381
Similarity      53 178 207 366
Space form geometry      51
Space of circles      73
Space of constant curvature      21 48 96 100 129 143 174 218 243 250 256 274
Space of hyperspheres      38
Space of point pairs      111 160ff 302 321 376ff
Spacelike normal field      55
Special isothermic surface      186
Special linear group      146
Spectral family of Darboux pairs      113 117
Spectral parameter      6 112 242
Spectral transformation      111 113 185 228
Sphere      290
Sphere complex      40 42
Sphere congruence      33 53ff 165ff 294ff 326ff
Sphere curve      62
Sphere pencil      40 44 290
Spherical type      252
Spin group      277 286 315
Square Clifford torus      124
Steinitz' basis exchange theorem      150
Stereographic projection      14 29 49 177f 301 316
Strip      56ff
Study determinant      151f
Subgeometry of Moebius geometry      2 8 42 47ff 104 185
Subgeometry of projective geometry      4 33
Submanifold      23ff
Surface of revolution      63 135 141 145 200f
Sym's formula      229 257
Symmetric decomposition      73 161 321
Symmetric endomorphism      171ff 305
Symmetric R-space      164 324
Symmetry-breaking      8 96 104 130 135 141 143
T-transformation      113 185 227f 267 368
Tangent plane congruence      60f 96 108 331
Tangent space map      331
Thomsen's theorem      104 132
Total inverse geodesic curvature      144
Total squared geodesic curvature      125 144
Total squared mean curvature      102 125
Totally geodesic      50
Totally umbilic Darboux transform      251
Totally umbilic hypersurface      29
Totally umbilic submanifold      30f
Trace-free second fundamental form      25
Transformation formula      16f 23
Transformation theory      6 104 111 184ff 334ff
Triply orthogonal system      6 85ff 93 95 103 334f 340
Twisted adjoint action      284 315
Umbilic      28 109 133 204
Umbilic distribution      69 83f
Umehara — Yamada perturbation      119 245
Vahlen matrix      277 301f 310ff 316 362
Vahlen's theorem      310
Vessiot's theorem      135
Wang's invariant differential forms      79
Weakly conformal      14
Weierstrass representation      209 212
Weingarten surface      97
Weingarten tensor field      23 58ff 67
Weingarten's criterion      117
Weingarten's form      27
Weyl tensor      17 59 340
Weyl — Schouten theorem      20
Weyl's theorem      53
Willmore channel surface      132 138 140f
Willmore conjecture      125 145
Willmore functional      102 126 143ff
Willmore surface      6 102 125ff
Willmore surface of revolution      144
Wirtinger operator      191
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте