Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Burn R.P. — Numbers and Functions: Steps to Analysis
Burn R.P. — Numbers and Functions: Steps to Analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Numbers and Functions: Steps to Analysis

Автор: Burn R.P.

Аннотация:

The transition from studying calculus in high school to studying mathematical analysis in college is notoriously difficult. In this new edition of Numbers and Functions, Dr. Burn invites the student to tackle each of the key concepts, progressing from experience through a structured sequence of several hundred problems to concepts, definitions and proofs of classical real analysis. The problems, with all solutions supplied, draw readers into constructing definitions and theorems. This novel approach to rigorous analysis will enable students to grow in confidence and skill and thus overcome traditional difficulties in learning this subject.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 2000

Количество страниц: 350

Добавлена в каталог: 11.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Logarithmic function      1.8 App.
Logarithmic function as limit      4.41 10.6
Logarithmic function as series      5.65 5.106 9.41—9.42 11.38
Logarithmic function, additive property      4.41 10.9
Logarithmic function, defined      11.22 11.25 11.30
Lower bound      3.5 4.67—4.70
Lower sum      10.16
Maclaurin      5H 9.37 9H
Mapping      6.1; see “function”
Maurolycus      1H
Maximum, local      8.29—8.32 9.2
Maximum, Of two real functions      6.45
Maximum, of two real numbers      6.44
Maximum-minimum Theorem      7.31—7.32 7.34 7H
Mean value theorem      9.13 9H
Mean Value Theorem for Integrals      10.45 10.59
Mean Value Theorem, nth      9.35
Mean Value Theorem, second      9.31 9H
Mean Value Theorem, third      9.33 9H
Mengoli      5H
Meray      4H
Mercator      11H
Mertens      3H
Monotonic functions      7.1—7.2
Monotonic functions, integrability of      10.7—10.8
Monotonic functions, one-sided limits of      7.5—7.7
Monotonic sequences      3.4 3.11 3.16 3.79 3.80 4.33—4.35
Napier      11H
Natural numbers      1.1 1.8
Neighbourhood      3.61 6.56—6.72
Neighbourhood, continuity by      6.64—6.72
Neighbourhood, limit by      6.83—6.85 6.87
Nested intervals      4.32 4.42
Newton      3H 4.37 5H 8H 9H 10.7 11H 12H
Newton — Raphson      App. 3.24
Nth roots      2.20 2.50—2.51 3.56—3.59 4.40—4.41 7.19 7.27 App.
Null sequences      3.24—3.47
Null sequences, absolute value rule      3.33
Null sequences, definition      3.28
Null sequences, difference rule      3.46
Null sequences, product rule      3.43
Null sequences, scalar rule      3.32
Null sequences, shift rule      3.36
Null sequences, squeeze rule      3.34 3.36 3.46
Null sequences, sum rule      3.44
Null sequences, test for divergence of series      5.11 5H
Open interval      3.78 7.9
Order      1H 2.1—2.29
Oresme      5.10 5H
Partial fractions      5.3
Partial sums of series      5.5 5.22
Pascal      1H
Pascal's triangle      1.4
Pasch      4H
Peacock      2H
Peano      1H 3H
Peano postulates      1H
Pointwise limit function      12.5
Polya      5.27
Positive      2.1 App.
Positive squares      2.15
Power series, circle of convergence      5.94
Power series, convergence      5.78—5.107 9.42 12.36—12.38
Power series, radius of convergence      5.94 5.102
Principle of Completeness      5.31 App.
Pringsheim      App. 3.19
Property of Archimedean Order      3.18 3.29 App.
Quadling      11.1
Radius of convergence      5.94 5.102 5H 12.40—12.42
Range of function      6.1
Rearrangement of scries when absolutely convergent      5.76—5.77
Rearrangement of scries when conditionally convergent      5.72—5.75
Repealed bisection      4.40 4.53 4.80 7.12
reverse      2.63
Riemann      5.75 5H 6H 7H 8H 10.23—10.24 10H
Rolle's theorem      9.1—9.8 9H
Ruler function      6.72 10.36
Sandwich theorem      see “squeeze rule”
Scalar rule      3.32 3.54 5.19
Schwarz      9H
Second comparison lest      5.53
Second comparison lest, limit form      5.55
Seidel      12H
Sequence of partial sums      5.5
Sequence, bounded      3.5 3.13—3.14 3.62
Sequence, constant      3.3 3.28 3.38 3.50
Sequence, convergent      3.48—4.83
Sequence, decreasing      3.4
Sequence, graph of      3.2
Sequence, increasing      3.4
Sequence, monotonic      3.4 3.80 4.33—4.35
Sequence, null      3.24—3.47
Sequence, tends to infinity      3.18 3.20—3.23 3.31
Series of positive terms      5.23—5.61 5.76
Series, convergent $\Sigma1/n^{\alpga}$      5.27—5.32 5H
Series, convergent absolutely      5.67
Series, convergent by alternating series test      5.63
Series, convergent by Cauchy's nth root test      5.35 5.38 5.70
Series, convergent by d'Alembert's ratio test      5.43 5.47 5.68—5.69
Series, convergent by first comparison test      5.26
Series, convergent by integral test      5.57 5H
Series, convergent by second comparison test      5.53 5.55
Series, convergent conditionally      5.71
Series, divergent      5.10 5.11 5.28—5.30
Series, harmonic      5.30
Series, Maclaurin      9.37—9.43
Series, rearrangement of      5.72—5.77 5H
Series, Taylor      9.35—9.46
Shift      3.13
Sine defined      9.39 11.51—11.58
Spivak      8.22 11.39
Square roots      2.17
Square roots, irrational      4.18—4.20
Square roots, real      4.37 4.39
Squares positive      2.15
Squeeze rule for continuous functions      6.36
Squeeze rule for convergent sequences      3.54
Squeeze rule for limits      6.98
Squeeze rule for null sequences      3.34 3.36
Start rule for scries      5.16
Step function      10.12—10.15
Step function, lower      10.16
Step function, upper      10.18
Subsequence      3.8—3.16
Subsequence of null sequence      3.36
Subsequence, convergent      4.43—4.46
Subsequence, monotonic      3.11 3.15—3.16
Sum rule      3.44 3.54 5.21 6.23 8.10
Sum, lower      10.16
Sum, upper      10.18
Supremum      4.62—4.66 4.80 4.82—4.84 7.5 7.7 9.4 10.16 10.21 12.12—12.15;
Surjection      6.2
Tagaki      8.22
Tall      8.22 App.
Tangent function defined      11.59—11.62
tangents      8.1—8.4
Taylor's theorem      8H 9H
Taylor's Theorem with Cauchy's remainder      9.45—9.46 10.59
Taylor's Theorem with Lagrange's remainder      9.35 9.42
Taylor's Theorem, integral form of remainder      10.59 10H
Thomae      6.72 10.36 10H 11H
Torricelli      10H
Transitive law, for order      2.9
Triangle inequality      2.61—2.62 2.64
Trichotomy law. for order      2.1 2.7 App.
Trigonometric functions      11.39—11.62 App.
Unbounded      3.5
Uniform continuity      7.37—7.44
Uniform convergence      12.15
Uniform convergence of power series      12.35—12.42
Uniform convergence, continuity      12.20—12.23
Uniform convergence, differentiability      12.32—12.34
Uniform convergence, integrability      12.24—12.31
Upper bound      3.5 4.59—4.61
Upper sum      10.18
Variable      6.1
Variable, real      6.1
Veronese      3H
Volterra      10.52
Wallis      1H 3H 11H
Waring      5H
Weierstrass      2H 3H 4H 6H 7.34 7H 8.21 8H 9H 11H 12H App.
Weierstrass M-test      12.36
Well-ordering principle      11H
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте