Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Zimand M. — Computational Complexity: A Quantitative Perspective
Zimand M. — Computational Complexity: A Quantitative Perspective



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Computational Complexity: A Quantitative Perspective

Автор: Zimand M.

Аннотация:

There has been a common perception that computational complexity is a theory of "bad news" because its most typical results assert that various real-world and innocent-looking tasks are infeasible. In fact, "bad news" is a relative term, and, indeed, in some situations (e.g., in cryptography), we want an adversary to not be able to perform a certain task. However, a "bad news" result does not automatically become useful in such a scenario. For this to happen, its hardness features have to be quantitatively evaluated and shown to manifest extensively.

The book undertakes a quantitative analysis of some of the major results in complexity that regard either classes of problems or individual concrete problems. The size of some important classes are studied using resource-bounded topological and measure-theoretical tools. In the case of individual problems, the book studies relevant quantitative attributes such as approximation properties or the number of hard inputs at each length.

One chapter is dedicated to abstract complexity theory, an older field which, however, deserves attention because it lays out the foundations of complexity. The other chapters, on the other hand, focus on recent and important developments in complexity. The book presents in a fairly detailed manner concepts that have been at the centre of the main research lines in complexity in the last decade or so, such as: average-complexity, quantum computation, hardness amplification, resource-bounded measure, the relation between one-way functions and pseudo-random generators, the relation between hard predicates and pseudo-random generators, extractors, derandomization of bounded-error probabilisticalgorithms, probabilistically checkable proofs, non-approximability of optimization problems, and others.

The book should appeal to graduate computer science students, and to researchers who have an interest in computer science theory and need a good understanding of computational complexity, e.g., researchers in algorithms, AI, logic, and other disciplines.

· Emphasis is on relevant quantitative attributes of important results in complexity.
· Coverage is self-contained and accessible to a wide audience.
· Large range of important topics including: derandomization techniques, non-approximability of optimization problems, average-case complexity, quantum computation, one-way functions and pseudo-random generators, resource-bounded measure and topology.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 356

Добавлена в каталог: 04.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Kondacs, A.      141
Kreisel — Lacombe — Shoenfield Theorem      6 39 44
L      8
L-reduction      227 313
Landweber, L.      50
Law of Large Numbers      317
Lebesgue measure      15—17 86
Lebesgue measure, outer      15
Lecerf, Y.      140
Leiserson, C.      313
Lenstra, A.      223
Levin, L.      49 95 107 152 222 223
Lewis, H.      49
Light POP theorem      310
Linear ordering      235
Linear program, dual      259
Linear programming      258 262
Linear test      293
LINEARITY TEST      300
Lipton, R.      223
Locally self-reducible      74
Log-APX      227 265
Lovasz, L.      272 313
Lubotzky, A.      315
Luby, M.      152 223
Lund, C      315
Lutz, J.      18 107
M-CYC      251
machine      2
Machtey, M.      50
Many-one polynomial-time equivalent      80
Margolis, N.      140
Markov’s inequality      317
Martingale      18 20 22 47 71 82
Martingale, effective      18
Martingale, global value      19
Martingale, polynomial-time computable      71
Martingale, resource-bounded      18
Martingale, set covered by      19
Martingale, succeeds      19
Martingale, system      22 72 82
MAX $F\Prod_i$      244
MAX $F\Prod_i$, weight      245
MAX $F\Prod_i$, weight(+)      245
MAX $F\Sigma_i$, weight      245
MAX $F\Sigma_i$, weight(+)      245
MAX $\Prod_i$      244
MAX $\Prod_i$, weight      245
MAX $\Prod_i$, weight(+)      245
MAX $\Sigma_0$      289
MAX $\Sigma_1$, weight(+)      252
MAX $\Sigma_i$      244
MAX $\Sigma_i$, weight      245
MAX $\Sigma_i$, weight(+)      245
MAX 2-SAT      255 282 288
MAX 3-SAT      252 273 275
MAX CLIQUE      239 244 282 287 313
MAX CONNECTED COMPONENTS      248
MAX CUT      255
MAX INDEPENDENT SET      287
MAX NP      313
MAX PB      239 240
MAX SAT      239 244
MAX SNP      255 256 313
MAX SNP($\pi$)      256 275
MAX SNP($\pi$), weight      256
MAX SNP($\pi$), weight(+)      256
MAX SUBDAG      256
Mayordomo, E.      107
Mc      239
MCC      248
McCreight, E.      49
Meagre      see “First Baire category” “Blum first”
Measurable set      15 137
Measure one      17
Measure theory      14
Measure zero      17
Measure, effective      21 46
Measure, PF-      71 75 80
Measure, resource-bounded      21 71
Measured set      42—44 48
Measurement      117
Measurement axiom      112
Measurement of a superposition      110
Mehlhorn, K.      50 107
Meyer, A.      49
Micali, S.      222 223 315
Mihara, T.      141
Miltersen, P.      107
MIN $F\Prod_1$      258 265
MIN $F\Prod_2(1)$      258 265
MIN $F\Prod_i$      244
MIN $F\Prod_i$, weight      245
MIN $F\Prod_i$, weight(+)      245
MIN $F\Sigma_i$, weight      245
MIN $F\Sigma_i$, weight(+)      245
MIN $\Prod_i$      244
MIN $\Prod_i$, weight      245
MIN $\Prod_i$, weight(+)      245
MIN $\Sigma_i$, weight      245
MIN $\Sigma_i$, weight(+)      245
MIN CYCLE      251
MIN PB      239
Min-entropy      156 212
MIP      270 315
Model      232
Moran, S.      315
Motwani, R.      315
Muller, H.      107
Multi-prover interactive proof systems      270
Naming theorem      49
Naor, J.      316
Naor, M.      223 316
ne      8
Near testable set      74
Nearly mear testable set      74
Neighborhood      12
NEXP      8
Nisan, N.      223 224 315
nl      8
NOT transformation      113
Nowhere dense set      11 12 27 44
Nowhere dense set, effective      14
NP      8 52 55 60 64 85 98 230 267
NP optimization problem      226 239 242
NP optimization problem, polynomially bounded      226 240
NP, PF-measure of      80
NP-complete      53 55 60 64
NP-complete set under $\leq_m^p$ reduction      53
NP-complete set under $\leq_T^p$, reduction      53
NPCOMP      64
NSPACE[f(n)]      6
NTIME[f(n)]      6
Objective function      225
Observable      118 119
Observation of a quantum system      117
one-time pad      144
One-way function      143 145 151 164 169 222
One-way function, exponentially strong      146 174
One-way function, strong      146 157 174
One-way function, weak      146 157
One-way permutation      152 162 170 175 223
Open set      12
Operator      5 43
Operator, effective      5
Operator, total      5
Operator, total effective      37 38 44
Optimization problem      225
Optimization problem, positive      226
Oracle      85
Oracle circuit      165
Oracle gate      165
Oracle Turing machine      52
Oracle, random      86
Outer measure      16
Outer product      112
P      8 51 55 60 64 85
P bi-immune      80
P vs. NP, relativized separation      85
P, measure of      72
P, PF-measure of      73
P, relaxations of      72
P-approximable      74
P-balanced immunity      86
P-computable distribution      94
P-immune set      66
P-isomorphism      75
P-multiselective set      74
P-quasi-approximable set      75 80
P-samplable distribution      94
P-simple set      66 69
Papadimitriou, C      313
Partial computable function      4
Partial computable predicate      4
PC      4
PCP      269 283
PCP theorem      270 296 315
Peralta, R.      316
pf      71 72
PhaseShift transformation      113
Phillips, R.      315
Po      257
Poly-APX      227
Polynomial-time approximation scheme      227
Polynomial-time many-one reducibility      53
Polynomial-time Turing reducibility      53
Polynomial-time weak membership properties      75
Polynomially related lengths      145
POPS      305 306 306
POPS, completeness      306
POPS, soundness      306
pos(s)      13
PP      9
Pred      4
Pred(x)      22
Predicate      4
Prenex normal form      232
PRIORITY ORDERING      257 275
Prob      86
Probabilistic circuit      183
Probabilistically checkable proof      269
Probabilistically checkable proof with scribes      305
Prover      268
Pseudo-random function      153 175 223
Pseudo-random generator      143 149 151 161 171 172 174 175 200 206 222 223
Pseudo-random generator, ensemble      149
Pseudo-random generator, exponentially strong      150 174 208
Pseudo-random generator, strong      150
Pseudo-random generator, type I      153
Pseudo-random generator, type II      153
PSPAGE      8 85 128
PTAS      227 275 287 313
Quantum algorithm, integer factoring      109
Quantum computation      110
Quantum computer      109 110 126
Quantum finite automaton      118 141
Quantum gate      113 130 132
Quantum register machine      126 130
Quantum register machine, basic operation      126
Quantum register machine, register      126
Quantum theory      109 110 112
Quantum Turing machine      126 127
Qubit      111 111 112 116
Qunatum finite automaton, language accepted by      120
Rabin, M.      29 49
Rackoff, C      315
Rare set      see “Nowhere dense set”
Recursion theorem      5
Reed — Muller error correcting code      183
Reed — Solomon error-correcting code      218
Reimann, J.      107
Reingold, O.      223
Rejecting state      2
Relation      231
Relation symbol      231
Relation variable      see “Relation symbol”
Reversible transformation      117
Rivest, R.      313
Rogers, H., Jr.      5
Rolf, D.      107
RP      9
Safra, S.      313
Sampling under adverse conditions      307
Santha, M.      224
Sarnak, P.      315
SAT      55 81 232 272
SAT, 3-SAT      55
SAT, k-SAT      55
Satisfiability problem      55
SATISFIABILITY TEST      303
Scheming, U.      106
Schnorr, C      18 37 222
Scribe      305
Second Baire category      27
Second-order formula      233
Second-order formula, existential      233
Second-order variable      233
Seiferas, J.      49 50
Self-correcting functions      301
Semi-ring      16 134
SET COVER      258 265 289 315
SET COVER(b)      262
Shaltiel, R.      224
Shamir, A.      315
Shannon entropy      211
Shannon, C      222
Shor, P.      109 140 141
Shub, M.      222
Signature      231
Simon, D.      128 141
Simon’s promise      128
Sleator, T.      140
Smolin, J.      140
Solovay, R.      107
Sparse set      19
Speed      see “SPEED($\Phi$ F)”
SPEED($\Phi$, F)      30 38
Speed-up theorem      31 37 42 49 50
Speedable function      30
Statistical distance      147 211
Statistical test      147
Stearns, R..      49
Steiglitz, K.      313
Structure      see “Finite structure”
Structure, $\sigma$-structure      231
Sudan, M.      223 224 315
Sung, S.      141
Superpolynomial function      146 174 180
Superposition of configurations      110
Superposition of states      111
Superset topology      13 60 62 64 66 70
System, (m, l)-      289
Szegedy, M.      313
Szemeredi, E.      315
Ta-Shma, A.      224
Tagged union      81
Tail bounds      317
Tape alphabet      2
Tensor product      112 114
Tensor product of linear applications      114
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте