Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory
Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebra, Volume I: Fields and Galois Theory

Авторы: Lorenz F., Levy S.

Аннотация:

From Math Reviews: "This is a charming textbook, introducing the reader to the classical parts of algebra. The exposition is admirably clear and lucidly written with only minimal prerequisites from linear algebra. The new concepts are, at least in the first part of the book, defined in the framework of the development of carefully selected problems. Thus, for instance, the transformation of the classical geometrical problems on constructions with ruler and compass in their algebraic setting in the first chapter introduces the reader spontaneously to such fundamental algebraic notions as field extension, the degree of an extension, etc... The book ends with an appendix containing exercises and notes on the previous parts of the book. However, brief historical comments and suggestions for further reading are also scattered through the text."


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st edition

Год издания: 2005

Количество страниц: 309

Добавлена в каталог: 01.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Localization at prime ideal      237
Lorenz, Falko      113 259 263
Luroth, Jakob (1844—1910)      240 247 280
Lutkebohmert, Werner      ii
Malle, Gunther      202
Matsumura, Hideyuki (1930— )      225
Matzat, B. Heinrich (1945— )      202
Maximal element      63
Maximal ideal      41 241
Mersenne, Marin (1588—1648)      105 258
Metacyclic      see “Solvable”
Miller, George Abraham (1863—1951)      255
Minimal polynomial      17 31
Mobius function, inversion formula      264
Mobius, August Ferdinand (1790—1868)      264
Module over a ring (or field)      62 192
Monoid algebra      60
Multiplicative function      237 264
Multiplicative group      24
Multiplicative group of finite field      83
Multiplicative map      62 152
Multiplicative subset      235 237 242 272
n-th roots      143
Nastold, Hans-Joachim (1929—2004)      ii 281
Neukirch, Jurgen (1937—1997)      113
Newton, Sir Isaac (1643—1727)      271
Newton’s Formulas      271
Nilpotent group      101 256
Nilradical      218 237
Noether, Emmy (1882—1935)      201 263
Noether, Emmy (1882—1935), isomorphism theorem for groups      170
Noether, Emmy (1882—1935), Noether normalization theorem      214
Noetherian ring      221
Norm      133
Normal basis      120 122 262
Normal closure      60 76
Normal field extension      59 76
Normal series      268
Normal subgroup      24 77 253—254
Normalized polynomial      16
normalizer      98
Nullstellensatz      219 281
Number theory      113 264
Opolka, Hans      105
Orbit      94
Orbit, formula      96
Order of a group element      85
Ordered set      63
p-component      155
p-group      97 154
p-subgroup      99
Pairing      150
Parity      see “Signature”
Pentagon, regular      1 9
Perfect field      73
Permutation      75 178—182
Permutation, cycle decomposition      179
Polygon, regular      1 3 9 51 104 258
Polynomial algebra      210
Polynomial ring      63
Prime element      37
Prime factorization      39 45
Prime field      31
Prime ideal      41
Prime numbers      39
Prime polynomial      26
Prime residue classes      88 250
Primitive element      21
Primitive element, theorem      78 244
Primitive polynomial      48
Primitive root      86
Primitive root of unity      88
Principal ideal      25 34 41
Principal series      268
Product of ideals      42 43
Product tensor      61
Projective linear group      247
Projective system, projective limit      126
Pure equation      143
Purely inseparable      71 246
Purely transcendental      213
Pythagorean field      263
Pythagorean triple      279
Quadratic equation      165
Quadratic field      259
Quadratic reciprocity law      107 110 111 258
Quadratically closed field      5
Quadrature of the circle      3 9 15
Quotient      28
Quotient, homomorphism      23
Quotient, ring      23
Radical      see also “Solvable by radikals”
Radical extension      166
Radical of an ideal      218
Rational functions      29 53 173 190
Rational parametrization of circle      279
Reciprocity law      107 111 264
Reduced ideal      219
Relatively prime      42 43
Remak, Robert (1888—1942)      123
Residue-class ring      23
Resolvent      145
Ring of formal fractions      235
Ring, extension      191
Ring, polynomial      63
Ring, simple      41
Root of unity      88
Ruffini, Paolo (1765—1822)      178
Ruler and compass      1 8 51 103 258
Scharlau, Winfried (1940— )      105
Schmidt, Otto Juljewitsch (1891—1956)      123
Scholz, Arnold (1904—1942)      178
Schonemann, Theodor      241
Schopohl, Ralf      ii
Schreier, Otto (1901—1929)      147 268
Schulze-Relau, Hubert      ii
Schur, Issai (1875—1941)      250
Seidenberg, Abraham (1916—1988)      274
Separable closure      71
Separable degree      66
Separable element      66
Separable polynomial      69 143
Shafarevich, Igor R. (1923— )      178 260
Signature map      181 269
Simple field extension      21 31 78
Simple group      182 254
Simple ring      41
Size of orbit      94
Solvable by irreducible radicals      171
Solvable by radicals      1 166
Solvable equation of prime degree      187 271
Solvable group      167 173 268 272
Speiser, Andreas (1885—1970)      263
Spektrum Akademischer Verlag      i
Spencer, Mark      ii
Splitting field      58
Springer-Verlag      ii
Square-free integer      50
Stabilizer      96
Steinitz, Ernst (1871—1928)      57
Stevin, Simon (1548—1620)      26
Storch, Uwe      230
Structure theorem for finite abelian groups      160
Substitution homomorphism      21 63
Successive      see under “Adjunction”
Sum of ideals      43
Swan, Richard G.      201
Sylow group (or p-subgroup)      99 255
Sylow, Ludvig (1832—1918)      99 101
Sylow’s Theorems      100
Symmetric functions      174 177 195 273
Tartaglia, Nicolo (1500—1557)      165
Tensor product      242
Tensor product of K-algebras      61
Theorem      see also “Fundamental”
Theorem on normal bases      120 122 262
Theorem, 90 of Hilbert      140 263
Theorem, Artin — Schreier      147
Theorem, Bertrand      271
Theorem, Capelli      267
Theorem, Cauchy      101 154
Theorem, Cayley      94
Theorem, Chinese remainder      42
Theorem, Dirichlet      251
Theorem, Euler — Lagrange      95
Theorem, Hermite — Lindemann      207
Theorem, Hilbert’s basis      221 280 281
Theorem, Hilbert’s irreducibility      190 201
Theorem, Kronecker      27
Theorem, Kronecker — Weber      259
Theorem, Lindemann      15
Theorem, Luroth      240 247 280
Theorem, Noether normalization      214
Theorem, Nullstellensatz      219 280 281
Theorem, primitive element      78 244
Theorem, structure of finite abelian groups      160
Theorem, Sylow      100
Theorem, Translation      115
Theorem, Wilson      259
Topological group      127
Torsion group      154
Torsionfree group      162
Totally real      276
Totient function      88 264
Trace      133
Transcendence basis      211
Transcendence degree      213 231
Transcendence of $\pi$      15 52 203
Transcendental extension      17
Transcendental number      15
Transcendental over K      15
Transitive group action      80 94
Transitivity of algebraicness      19
Transitivity of separability      69
Translation      94
Translation theorem      115
Transposition      181 189
Trisection of the angle      1 2 9 52
Tschebyschev      see “Chebyshev”
UFD      37 45 195
Universal problem      28 235
Universal property      21
Valuation      36 38 40 47
van der Waerden, Bartel Leendert (1903—1996)      177
Variety      222
Weber, Heinrich (1842—1913)      259
Weierstrass, Karl (1815—1897)      206
Wielandt, Helmut (1910—2001)      255
Wikipedia      64
Willhoft, Oda      ii
Wilson, John (1741—1793)      259
Witt, Ernst (1911—1991)      149 268
Yui, Noriko      202
Zimmermann, Nadja      264
Zorn, Max August (1906—1993)      64
Zorn’s Lemma      63
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте