Авторизация
Поиск по указателям
Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Algebra, Volume I: Fields and Galois Theory
Авторы: Lorenz F., Levy S.
Аннотация: From Math Reviews: "This is a charming textbook, introducing the reader to the classical parts of algebra. The exposition is admirably clear and lucidly written with only minimal prerequisites from linear algebra. The new concepts are, at least in the first part of the book, defined in the framework of the development of carefully selected problems. Thus, for instance, the transformation of the classical geometrical problems on constructions with ruler and compass in their algebraic setting in the first chapter introduces the reader spontaneously to such fundamental algebraic notions as field extension, the degree of an extension, etc... The book ends with an appendix containing exercises and notes on the previous parts of the book. However, brief historical comments and suggestions for further reading are also scattered through the text."
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 1st edition
Год издания: 2005
Количество страниц: 309
Добавлена в каталог: 01.06.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Localization at prime ideal 237
Lorenz, Falko 113 259 263
Luroth, Jakob (1844—1910) 240 247 280
Lutkebohmert, Werner ii
Malle, Gunther 202
Matsumura, Hideyuki (1930— ) 225
Matzat, B. Heinrich (1945— ) 202
Maximal element 63
Maximal ideal 41 241
Mersenne, Marin (1588—1648) 105 258
Metacyclic see “Solvable”
Miller, George Abraham (1863—1951) 255
Minimal polynomial 17 31
Mobius function, inversion formula 264
Mobius, August Ferdinand (1790—1868) 264
Module over a ring (or field) 62 192
Monoid algebra 60
Multiplicative function 237 264
Multiplicative group 24
Multiplicative group of finite field 83
Multiplicative map 62 152
Multiplicative subset 235 237 242 272
n-th roots 143
Nastold, Hans-Joachim (1929—2004) ii 281
Neukirch, Jurgen (1937—1997) 113
Newton, Sir Isaac (1643—1727) 271
Newton’s Formulas 271
Nilpotent group 101 256
Nilradical 218 237
Noether, Emmy (1882—1935) 201 263
Noether, Emmy (1882—1935), isomorphism theorem for groups 170
Noether, Emmy (1882—1935), Noether normalization theorem 214
Noetherian ring 221
Norm 133
Normal basis 120 122 262
Normal closure 60 76
Normal field extension 59 76
Normal series 268
Normal subgroup 24 77 253—254
Normalized polynomial 16
normalizer 98
Nullstellensatz 219 281
Number theory 113 264
Opolka, Hans 105
Orbit 94
Orbit, formula 96
Order of a group element 85
Ordered set 63
p-component 155
p-group 97 154
p-subgroup 99
Pairing 150
Parity see “Signature”
Pentagon, regular 1 9
Perfect field 73
Permutation 75 178—182
Permutation, cycle decomposition 179
Polygon, regular 1 3 9 51 104 258
Polynomial algebra 210
Polynomial ring 63
Prime element 37
Prime factorization 39 45
Prime field 31
Prime ideal 41
Prime numbers 39
Prime polynomial 26
Prime residue classes 88 250
Primitive element 21
Primitive element, theorem 78 244
Primitive polynomial 48
Primitive root 86
Primitive root of unity 88
Principal ideal 25 34 41
Principal series 268
Product of ideals 42 43
Product tensor 61
Projective linear group 247
Projective system, projective limit 126
Pure equation 143
Purely inseparable 71 246
Purely transcendental 213
Pythagorean field 263
Pythagorean triple 279
Quadratic equation 165
Quadratic field 259
Quadratic reciprocity law 107 110 111 258
Quadratically closed field 5
Quadrature of the circle 3 9 15
Quotient 28
Quotient, homomorphism 23
Quotient, ring 23
Radical see also “Solvable by radikals”
Radical extension 166
Radical of an ideal 218
Rational functions 29 53 173 190
Rational parametrization of circle 279
Reciprocity law 107 111 264
Reduced ideal 219
Relatively prime 42 43
Remak, Robert (1888—1942) 123
Residue-class ring 23
Resolvent 145
Ring of formal fractions 235
Ring, extension 191
Ring, polynomial 63
Ring, simple 41
Root of unity 88
Ruffini, Paolo (1765—1822) 178
Ruler and compass 1 8 51 103 258
Scharlau, Winfried (1940— ) 105
Schmidt, Otto Juljewitsch (1891—1956) 123
Scholz, Arnold (1904—1942) 178
Schonemann, Theodor 241
Schopohl, Ralf ii
Schreier, Otto (1901—1929) 147 268
Schulze-Relau, Hubert ii
Schur, Issai (1875—1941) 250
Seidenberg, Abraham (1916—1988) 274
Separable closure 71
Separable degree 66
Separable element 66
Separable polynomial 69 143
Shafarevich, Igor R. (1923— ) 178 260
Signature map 181 269
Simple field extension 21 31 78
Simple group 182 254
Simple ring 41
Size of orbit 94
Solvable by irreducible radicals 171
Solvable by radicals 1 166
Solvable equation of prime degree 187 271
Solvable group 167 173 268 272
Speiser, Andreas (1885—1970) 263
Spektrum Akademischer Verlag i
Spencer, Mark ii
Splitting field 58
Springer-Verlag ii
Square-free integer 50
Stabilizer 96
Steinitz, Ernst (1871—1928) 57
Stevin, Simon (1548—1620) 26
Storch, Uwe 230
Structure theorem for finite abelian groups 160
Substitution homomorphism 21 63
Successive see under “Adjunction”
Sum of ideals 43
Swan, Richard G. 201
Sylow group (or p-subgroup) 99 255
Sylow, Ludvig (1832—1918) 99 101
Sylow’s Theorems 100
Symmetric functions 174 177 195 273
Tartaglia, Nicolo (1500—1557) 165
Tensor product 242
Tensor product of K-algebras 61
Theorem see also “Fundamental”
Theorem on normal bases 120 122 262
Theorem, 90 of Hilbert 140 263
Theorem, Artin — Schreier 147
Theorem, Bertrand 271
Theorem, Capelli 267
Theorem, Cauchy 101 154
Theorem, Cayley 94
Theorem, Chinese remainder 42
Theorem, Dirichlet 251
Theorem, Euler — Lagrange 95
Theorem, Hermite — Lindemann 207
Theorem, Hilbert’s basis 221 280 281
Theorem, Hilbert’s irreducibility 190 201
Theorem, Kronecker 27
Theorem, Kronecker — Weber 259
Theorem, Lindemann 15
Theorem, Luroth 240 247 280
Theorem, Noether normalization 214
Theorem, Nullstellensatz 219 280 281
Theorem, primitive element 78 244
Theorem, structure of finite abelian groups 160
Theorem, Sylow 100
Theorem, Translation 115
Theorem, Wilson 259
Topological group 127
Torsion group 154
Torsionfree group 162
Totally real 276
Totient function 88 264
Trace 133
Transcendence basis 211
Transcendence degree 213 231
Transcendence of 15 52 203
Transcendental extension 17
Transcendental number 15
Transcendental over K 15
Transitive group action 80 94
Transitivity of algebraicness 19
Transitivity of separability 69
Translation 94
Translation theorem 115
Transposition 181 189
Trisection of the angle 1 2 9 52
Tschebyschev see “Chebyshev”
UFD 37 45 195
Universal problem 28 235
Universal property 21
Valuation 36 38 40 47
van der Waerden, Bartel Leendert (1903—1996) 177
Variety 222
Weber, Heinrich (1842—1913) 259
Weierstrass, Karl (1815—1897) 206
Wielandt, Helmut (1910—2001) 255
Wikipedia 64
Willhoft, Oda ii
Wilson, John (1741—1793) 259
Witt, Ernst (1911—1991) 149 268
Yui, Noriko 202
Zimmermann, Nadja 264
Zorn, Max August (1906—1993) 64
Zorn’s Lemma 63
Реклама