Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1
Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Classical Groups: Their Invariants and Representations, Vol. 1

Автор: Weyl H.

Аннотация:

In this renowned volume, Hermann Weyl discusses the symmetric, full linear, orthogonal, and symplectic groups and determines their different invariants and representations. Using basic concepts from algebra, he examines the various properties of the groups. Analysis and topology are used wherever appropriate. The book also covers topics such as matrix algebras, semigroups, commutators, and spinors, which are of great importance in understanding the group-theoretic structure of quantum mechanics.

Hermann Weyl was among the greatest mathematicians of the twentieth century. He made fundamental contributions to most branches of mathematics, but he is best remembered as one of the major developers of group theory, a powerful formal method for analyzing abstract and physical systems in which symmetry is present. In The Classical Groups, his most important book, Weyl provided a detailed introduction to the development of group theory, and he did it in a way that motivated and entertained his readers. Departing from most theoretical mathematics books of the time, he introduced historical events and people as well as theorems and proofs. One learned not only about the theory of invariants but also when and where they were originated, and by whom. He once said of his writing, "My work always tried to unite the truth with the beautiful, but when I had to choose one or the other, I usually chose the beautiful."

Weyl believed in the overall unity of mathematics and that it should be integrated into other fields. He had serious interest in modern physics, especially quantum mechanics, a field to which The Classical Groups has proved important, as it has to quantumchemistry and other fields. Among the five books Weyl published with Princeton, Algebraic Theory of Numbers inaugurated the Annals of Mathematics Studies book series, a crucial and enduring foundation of Princeton's mathematics list and the most distinguished book series in mathematics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1946

Количество страниц: 320

Добавлена в каталог: 01.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Singular element      196
Spinor and spin representation      273
Splitting by field extension      306 (chapter X)
Splitting field      290
Step transformation      48
Symbolic method      20 243
Symbolic vector      50
Symmetric group      36 97
Symmetric group, its vector invariants      36—39
Symmetric group, representations      124—127 267
Symmetric group, representations, character      213
Symmetric group, representations, relationship to the linear group      98 130
Symmetrization      120
Symmetry condition      97
Symmetry diagram      120
Symmetry operator      97
Symplectic group      165
Symplectic group, characters      218 219
Symplectic group, connectivity      270
Symplectic group, vector invariants      167
Symplectic group, vector invariants, second main theorem      168
Symplectic group, vector invariants, second main theorem, invariants      257 267
Symplectic group, vector invariants, their enumeration      222
Symplectic group, volume element      218
Symplectic group, volume element, enveloping algebra and representations      174
Symplectic ideal      299 (chapter X)
Symplectic transformation      163
Symplectic transformation, transformation on principal axes      217
Tensor      21
Trace of a matrix      8
Trace of a matrix, of a quantity in a group ring      104
Trace of a matrix, of a tensor      150 175
Translation (in a group)      188
Transposed matrix      10
Type of a quantity      17
Typical basic invariants      32 44
Unimodular group      13 see
Unit of a group      14
Unit of an algebra      80
Unitarian trick      265
Unitary group      171
Unitary group, characters      201
Unitary group, compactness      178
Unitary group, connectivity      194 268—269
Unitary group, volume element      197
Unitary group, volume element, representations      178 201
Unitary restriction      171 177
Unitary transformation      170
Unitary transformation, transformation to principal axes      179
Universal covering manifold      258
Vector      6
Vector invariant      24
Vector invariants of the alternating group      34
Vector invariants of the alternating group, of the group of step transformations      49 52
Vector invariants of the alternating group, of the linear group      45—47 138
Vector invariants of the alternating group, of the orthogonal group      31—36 53
Vector invariants of the alternating group, of the orthogonal group, in the formal sense      63
Vector invariants of the alternating group, of the orthogonal group, infinitesimal      68
Vector invariants of the alternating group, of the symplectic group      167
Vector invariants of the alternating group, of the symplectic group, in the formal sense      172
Vector invariants of the alternating group, symmetric group      30 36
Vector, covariant and contravariant      10
Volume element on a group      188
Volume element on a group, of the orthogonal group      224 226
Volume element on a group, of the symplectic group      218
Volume element on a group, of the unitary group      197
Weddernburn's theorem      29 91
Weight of relative invariants      26
Young symmetrizer      120
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте