Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Powers D.L. — Boundary Value Problems: And Partial Differential Equations
Powers D.L. — Boundary Value Problems: And Partial Differential Equations



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Boundary Value Problems: And Partial Differential Equations

Автор: Powers D.L.

Аннотация:

Boundary Value Problems is the leading text on boundary value problems and Fourier series for professionals and students in engineering, science, and mathematics who work with partial differential equations.

In this updated edition, author David Powers provides a thorough overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Additional techniques used include Laplace transform and numerical methods. Professors and students agree that Powers is a master at creating examples and exercises that skillfully illustrate the techniques used to solve science and engineering problems.

Features:
*CD-ROM with animations and graphics of solutions, additional exercises and chapter review questions-all new in the Fifth Edition
* Nearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercises
* Many exercises based on current engineering applications
* An Instructor's Manual and Student Solutions Manual are available separately


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 5th edition

Год издания: 2005

Количество страниц: 520

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Periodic functions, extensions of      65—71
Periodic functions, extensions of, endpoints of      76—77
Periodic functions, extensions of, uniform convergence      82—83
Piecewise continuous functions      75—76
Piecewise smooth functions      76
Plate, flow past      289
Poiseuille flow      36
Poisson equation      268—269
Polar coordinates, potential equation in      256—257 275—279
Polynomial solution for potential equation      256
Potential equation      255—285
Potential equation in disk      275—279
Potential equation in rectangle      259—269
Potential equation in unbounded regions      270—272
Potential equation, limitations of product method      280—282
Potential equation, Poisson equation      268—269
Potential equation, polynomial solution for      256
Potential equation, soap films      283
Potential equation, solutions to (harmonic functions)      255
Principle of superposition      3 10 152
Principle of superposition, wave equation and standing waves      220
Probability density function      203
Product method (separation of variables)      150 166—167
Product method (separation of variables), limitations of      280—282
Product method (separation of variables), potential in rectangle      259—261 266
Radial heat flow      39—40
Radiation      142
Radical functions, integrals of      438
Rational functions, integrals of      438
Rayleigh method      239
Rayleigh quotient      239
Rectangle, potential equation in      259—269
Reduction or order      8—9
Regular singular points      7 38—40
Regular Sturm — Liouville problems      178—179
Regular Sturm — Liouville problems, convergence theorem      182
Regular Sturm — Liouville problems, one-dimensional wave equation      234
Removable discontinuities      74 79
Restoring term, forcing functions      117
Revision Rule      17
Right-hand limits      73—74
Robin conditions      139
Rod vibrations      253
Rods of heat-conducting material      See heat conduction problems
Sampling theorem      121—124
Sawtooth function      81—82
Second-order equations, general form      205
Second-order equations, heat      See heat conduction problems
Second-order equations, homogeneous      2—9
Second-order equations, nonhomogeneous      21—23
Second-order equations, potential      See potential equation
Second-order equations, wave      See wave equation
Sectionally continuous functions      75—76
Sectionally smooth functions      76
Semi-infinite intervals      40—41
Semi-infinite rods      188—191
Separation of variables (product method)      150 166—167
Separation of variables (product method), limitations of      280—282
Separation of variables (product method), potential in rectangle      259—261 266
Sine function      66—68
Sine function, Fourier sine integral representation      109—110
Sine function, hyperbolic      4
Sine function, integrals of      439
Singular boundary value problems      38—41
Singular eigenvalue problems      189
Singular points      7 38—40
Soap films      283
Soliton (solitary) waves      249
Solutions, general, boundary value problems      26
Solutions, general, homogeneous differential equations      158
Solutions, general, nonhomogeneous linear equations      15
Solutions, general, one-dimensional wave equation      228
Solutions, general, second-order equations      3 205 280—281
Solutions, particular      15—23
Square-wave function      75—77 79—80
standing waves      220
Steady-state problems      See also potential equation
Steady-state problems, temperature (heat conduction)      143—147
Steady-state problems, temperature (heat conduction), convection      170—174
Steady-state problems, temperature (heat conduction), different end conditions (example)      157—161
Steady-state problems, temperature (heat conduction), fixed end temperatures (example)      149—155
Steady-state problems, temperature (heat conduction), generalizations on      184—187
Steady-state problems, temperature (heat conduction), insulated ends (example)      157—161
Steady-state problems, temperature (heat conduction), semi-infinite rods      184—187 193—197
Steady-state problems, wave equation      218 232
Stefan — Boltzmann law of radiation      142
Stokes derivative      250
Stream function      284
Stresses due to thermal effects      214
String, vibrating      215—224. See also wave equation
String, vibrating, frequencies of vibration      223—224 234
String, vibrating, one-dimensional wave equation      233—235
Sturm — Liouville problems      178—179
Sturm — Liouville problems, expansions in series of eigenfunctions      181—182
Sturm — Liouville problems, generalizations on heat conduction problems      184—187
Sturm — Liouville problems, one-dimensional wave equation      234
Sulphur dioxide, diffusion of      55—56 192—193
Superposition, principle of      3 10 152
Superposition, wave equation and standing waves      220
Surfaces, insulated      157—161. See also heat conduction problems
Suspension bridge (hanging cable system)      26—29
Symmetry of sine and cosine functions      66—68
Table of integrals      438—440
Taylor series      114
Temperature (heat conduction), steady-state      143—147
Temperature (heat conduction), three-dimensional steady-state solution      See potential equation
Temperature (heat conduction), two-dimensional steady-state equation      255
Term, forcing functions      117
thermal conductivity      137
Thermal diffusivity      137
Thermal stresses      214
Transient temperature distribution      146
Transient temperature distribution, fixed end temperatures      149—155
Transverse displacement      See wave equation
Trapezoidal function      125
Traveling wave solution (d'Alembert's method)      227—231 252
Triangle function      123
Trigonometric functions      435
Trigonometric series, history of      124
Trivial solutions      150
Truncated Fourier series      92
Unbounded conditions, potential equation      270—272
Unbounded conditions, wave equation      239—244
Undetermined coefficients, nonhomogeneous linear equations      16—20
Uniform convergence      79—83
Variation of parameters      20—23
Velocity potential function      258 284
Vibrating string problem      215—224. See also wave equation
Vibrating string problem, frequencies of vibration      223—224 234
Vibrating string problem, one-dimensional wave equation      233—235
Water hammers      250
Wave equation      215—247 280
Wave equation, d'Alembert's method      227—231 252
Wave equation, estimating eigenvalues for      236—239
Wave equation, frequencies of vibration      223—224 234
Wave equation, one-dimensional, in general      233—235
Wave equation, vibrating string problem      215—224 234
Wave in unbounded regions      239—244
Whirling speeds      55
Windows      111
wronskian      3
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте