|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Ahlberg J.H., Nilson E.N., WAlsh J.L. — The Theory of Splines and Their Applications |
|
|
Ïðåäìåòíûé óêàçàòåëü |
, definition of 75
, definition of 275
, definition of 75
Ahlberg, J.R. 2 3 4 5 6 7 70 78 136 140 142 237
Atteia, M. 6
Auslender, S. 143
Beam theory 1 3 77
Beamfit see “Cubic spline”
Bellman, R.E. 56
Best approximation property 4
Best approximation property for cubic splines 16—19 77—78
Best approximation property for doubly cubic splines 244—245
Best approximation property for generalized uplines 200—201
Best approximation property for polynomial splines 157—159
Bicubic splines 5—6 (see also “Doubly cubic splines”)
Birkhoff, G. 4 5 29 237
Birkhoff, G., definition of 275
Canonical mesh bases for cubic splines 101—103
Canonical mesh bases for doubly cubic splines 249
Canonical mesh bases for generalized splines 219—220 275
Canonical mesh bases for polynomial splines 179—182
Cardmal splines 52—53 245—247 251—254
Circulant matrix 36 133 148—149
Convergence in norm for cubic splines 98—101
Convergence in norm for doubly cubic splines 247—248
Convergence in norm for generalized splines 214—219
Convergence in norm for polynomial splines 176—179
Convergence properties 4—5
Convergence properties for cubic splines 19—34 61—74 87—96
Convergence properties for doubly cubic splines 247—248
Convergence properties for generalized splines 201—212 274
Convergence properties for polynomial splines 135—143 148—152 166—174
Coons surfaces 262—264
Cubic splines 1 9—108
Cubic splines 1, best approximation property 16—19 77—78
Cubic splines 1, canonical mesh bases 101—103
Cubic splines 1, cardinal splines 52—58
Cubic splines 1, convergence 19—34 61—74 87—96
Cubic splines 1, convergence m norm 93—101
Cubic splines 1, curve fitting 50—52
Cubic splines 1, deficiency of 24
Cubic splines 1, defining values 82 97
Cubic splines 1, end conditions 11 13—14 50
Cubic splines 1, equal intervals 9 34—42
Cubic splines 1, equations for 10—16 84—87
Cubic splines 1, existence 16—19 61—74 84
Cubic splines 1, first integral relation 77—82
Cubic splines 1, fundamental identity 78—79
Cubic splines 1, Hilbert space theory of 97—107
Cubic splines 1, integral equations 57—59
Cubic splines 1, linear functionals 103—107
Cubic splines 1, minimum norm property 75—77
Cubic splines 1, orthogonality 97—101
Cubic splines 1, parametric splines 51
Cubic splines 1, periodic cubjc splines 10
Cubic splines 1, second integral relation 89—91
Cubic splines 1, simple cubic splines 78
Cubic splines 1, spline-on-a-spline 44 48—50
Cubic splines 1, type I 75
Cubic splines 1, type I' 75
Cubic splines 1, type II 75
Cubic splines 1, type II’ 75
Cubic splines 1, uniqueness 16—19 82—83
Cumulative chord length 51 254—262
Curve fitting 1—2 50—52 143
Dahlqulst, G. 233
Davis, P.J. 19 220
de Eoor, C. 4 5 6 7 29 237
Deficiency of a spline 7
Deficiency of a spline for cubic splines 24
Deficiency of a spline for generalized splines 191—192
Deficiency of a spline for polynomial splines 123 143—147 157 163—164
Deficiency of a spline for quintic splines 123 143—148
Defining values 82 97 175 235
Degree of a spline 109
Differential equations 52—57 228—233
Differentiation see “Numerical differentiation”
Direct products (of Hubert spaces) 249
Doubly cubic splines 5 235—264
Doubly cubic splines, 275
Doubly cubic splines, best approximation property 244—245
Doubly cubic splines, canonical mesh bases 249
Doubly cubic splines, cardinal splines 245—247 251—254
Doubly cubic splines, convergence 247—248
Doubly cubic splines, convergence in norm 250
Doubly cubic splines, defining values 235
Doubly cubic splines, doubly periodic splines 236
Doubly cubic splines, existence 239 243—244
Doubly cubic splines, first integral relation 242
Doubly cubic splines, fundamental identity 240—242
Doubly cubic splines, Hilbeit space theory 249—251
Doubly cubic splines, irregular regions 254—258
Doubly cubic splines, minimum norm property 242—243
Doubly cubic splines, partial differential equations 251—254
Doubly cubic splines, partial splines 237—239
Doubly cubic splines, second integral relation 248
Doubly cubic splines, simple doubly cubic splines 235
Doubly cubic splines, surfaces 256—262
Doubly cubic splines, type I 235—236
Doubly cubic splines, type I' 236
Doubly cubic splines, type II 236
Doubly cubic splines, type II' 236
Doubly cubic splines, uniqueness 239 243—244
Doubly periodic splines 236
Eigenvalue problem 57—58 228—230
Elastica 1 3
End conditions, cubic splines 11 13—14 50
End conditions, curve fitting 50
End conditions, modified type k 170
End conditions, polynomial splines 122—123 158
End conditions, type I 75 113 193—194 235—236
End conditions, type I' 75 113 193—194 236
End conditions, type II 75 313 193—194 236
End conditions, type II' 75 113 193—194 236
End conditions, type k 167—168 194
Equal intervals, cubic splines 9 34—42
Equal intervals, polynomial splines 124—135 148—152
Existence of splines 2
Existence of splines, of cubic splines 16—19 61—74 84
Existence of splines, of doubly cubic splines 239 243—244
Existence of splines, of generalized splines 199—200 272—274
Existence of splines, of polynomial splines 132—335 165—866
Explicit type 269—270
Fejer, L. 23—24 147—148
First integral relation 3
First integral relation for cubic splines 77—82
First integral relation for doubly cubic splines 242
First integral relation for generalized sphnes 193—195 270 271
First integral relation for polynomial sphnes 155—156
Fundamental identity 392—193 267—269
Fundamental identiy for cubic splines 78—79
Fundamental identiy for doubly cubic splines 240—242
Fundamental identiy for generalized splines 192—193 267—269
Fundamental identiy for polynomial splines 154—155
Garabedian, H. 5 237
Generalized splines 6 191—233 265—276
Generalized splines, best approximation property 200—201
Generalized splines, canonical mesh bases 239—220 275
Generalized splines, convergence 203—212 274
Generalized splines, convergence in norm 234—239
Generalized splines, deficiency of 191—192
Generalized splines, differential equations 228—233
Generalized splines, equations for 197—399
Generalized splines, existence 199—200 272—274
Generalized splines, explicit type 269—270
Generalized splines, first integral relation 393—195 270—271
| Generalized splines, Hilbert space theory 213—233 275—276
Generalized splines, integral equations 230—232
Generalized splines, linear functional 220—233 275—276
Generalized splines, minimum norm property 195—196 271—272
Generalized splines, numerical integration 224—228
Generalized splines, order of 393
Generalized splines, orthogonality 238
Generalized splines, partial differential equations 276
Generalized splines, partial splines 273
Generalized splines, Peano kernels 220—224
Generalized splines, periodic splines 194
Generalized splines, second integral relation 204—206
Generalized splines, simple splines 194
Generalized splines, strong interpolation 270
Generalized splines, two-dimensional 265—276
Generalized splines, type I 193—194
Generalized splines, type I' 193—194
Generalized splines, type II 193—194
Generalized splines, type II' 193—194
Generalized splines, type k 394
Generalized splines, uniqueness 196—197 271—272
Generalized splines, uniqueness property 272
Gershgorm’s theorem 16
Golomb, M. 7—8
Greville, T.N.E. 4 6 105
heterogeneous splines 394
Hilbert space theory 3—4
Hilbert space theory for cubic splines 97—107
Hilbert space theory for doubly cubic splines 249—251
Hilbert space theory for generalized splines 213—233 275—276
Hilbert space theory for polynomial splines 174—190
Hille, E 134
Holladay, J.C. 3 8 46 75 77 73 80
Integral equations 57—61 230—232
Integration see “Numerical integration”
Irregular regions 254—258
Kalaba, R.E. 56
Limits on convergence 95—96 174 211—212
Linear functional 6—7 103—107 185—189 220—233 275—276
Lynch, R.E. 4 6 7
Mathematical spline 1 9
Meir, A 4 27
Mesh bases 101—103 179—182
Mesh restrictions 22 25 94—95
Method of cardinal splines see “Cardinal splines”
Minimum curvature property 2 3
Minimum norm property 3
Minimum norm property for cubic splines 75—77
Minimum norm property for doubly cubic splines 242—243
Minimum norm property for generalized splines 195—196 271—272
Minimum norm property for polynomial splines 156—157
Modified type k 170 (see also “Type k”)
Multidimensional splines 5 6
Nilson, E.N. 2 3 5 7 70 78 136 140 142 237
Nonlinear differential equations 56
Numerical differentiation 42—57
Numerical integration 42—50 145—146 224—228
Order of a spline 191
Orthogonality, cubic splines 97—101
Orthogonality, generalized splines 213—219
Orthogonality, polynomial splines 174—179 (see also “Canonical mesh bases”)
Parametric splines 51 254—258
Parametric splines, surfaces 258—262
Partial differential equations, numerical solution of 251—254 276
Partial splines 237—239 273
Peano kernel 6 103—105 182—189 220—224
Peano, G 105 185
Periodic splines 10 148—152 156 167 194 236
Polynomial splines 109—189
Polynomial splines, best approximation property 157—159
Polynomial splines, canonical mesh bases 179—182
Polynomial splines, convergence 135—143 148—152 166—174
Polynomial splines, convergence m norm 176—179
Polynomial splines, deficiency of 123 143—148 157 163—164
Polynomial splines, defining values 175
Polynomial splines, degree of 109
Polynomial splines, end conditions 122—123 158
Polynomial splines, equal intervals 124—135 148—152
Polynomial splines, equations for 109—123 160—165
Polynomial splines, even degree 109—110 153
Polynomial splines, existence of 132—135 165—166
Polynomial splines, first integral relation 155—156
Polynomial splines, fundamental identity 154—155
Polynomial splines, Hilbert space theory 174—189
Polynomial splines, limits on convergence 174
Polynomial splines, linear functional 185—189
Polynomial splines, minimum norm property 156—157
Polynomial splines, modified type k 170
Polynomial splines, numerical integration 145—146
Polynomial splines, odd degree 5 153—189
Polynomial splines, orthogonality 174—179
Polynomial splines, Peano kernels 182—189
Polynomial splines, periodic splines 148—152 156 167
Polynomial splines, quintic splines 143—148
Polynomial splines, remainder formulas 185—139
Polynomial splines, second integral relation 168—170
Polynomial splines, simple splines 113
Polynomial splines, type I 113
Polynomial splines, type I' 113
Polynomial splines, type II 113
Polynomial splines, type II' 113
Polynomial splines, type k 167—168
Polynomial splines, uniform mesh 148—152
Polynomial splines, uniqueness 159—160
Qmntic splines 143—148
Quadrature see “Numerical integration”
Remainder formulas 303—105 185—189 221—228
Sard, A. 6 105 185 222 227 233 275
Schoenberg, I.J. 2 4 5 6 7 44 75 106 185
Schweikert, D.G. 6
Second integral relation 5
Second integral relation for cubic splines 89—91
Second integral relation for double cubic splines 248
Second integral relation for generalised splines 204—206
Second integral relation for polynomial splines 168—170
Secrest, D. 8
Sharma, A. 4 27
Simple splines 7 78 113 194 235
Sokolnikoff, I.S. 2 3 77
Space technology 107—108
Spline equations for cubic splines 10—16 84—87
Spline equations for generalized splines 197—199
Spline equations for polynomial splines 109—123 160—165
Spline surfaces 256—262 (see also “Coons surfaces”)
Spline-on-spline 44 48—50
Splines in tension 6
Splines of even degree 109—110 153
Splines of odd degree 153—389 (see also “Polynomial splines cubic
Strong interpolation 270
Surfaces see “Spline surfaces” “Coons
Two-dimensional splines, doubly cubic splines 235—264
Two-dimensional splines, generalized splines 265—276
Type I 75 113 193—194 235—236
Type I' 75 113 193—154 236
Type II 75 113 193—194 236
Type II' 75 113 193—194 236
Type k 167—168 170 194
Uniform mesh 148—152 (see also “Equal intervals”)
Uniqueness of cubic splines 16—19 82—83
Uniqueness of doubly cubic splines 239 243—244
Uniqueness of generalized splines 196—197 271—272
Uniqueness of polynomial splines 159—160
Uniqueness property 272
Walsh; J.L. 2 3 4 5 6 7 78 136 140 142 237
Weinberger, H.F. 7—8
Whitney, A. 2
Ziegler, Z. 5 136
|
|
|
Ðåêëàìà |
|
|
|
|
|
|