Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bovier A., Gill R. (Ed), Ripley B.D. (Ed) — Statistical Mechanics of Disordered Systems: A Mathematical Perspective
Bovier A., Gill R. (Ed), Ripley B.D. (Ed) — Statistical Mechanics of Disordered Systems: A Mathematical Perspective



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Statistical Mechanics of Disordered Systems: A Mathematical Perspective

Авторы: Bovier A., Gill R. (Ed), Ripley B.D. (Ed)

Аннотация:

Our mathematical understanding of the statistical mechanics of disordered systems is going through a period of stunning progress. This self-contained book is a graduate-level introduction for mathematicians and for physicists interested in the mathematical foundations of the field, and can be used as a textbook for a two-semester course on mathematical statistical mechanics. It assumes only basic knowledge of classical physics and, on the mathematics side, a good working knowledge of graduate-level probability theory. The book starts with a concise introduction to statistical mechanics, proceeds to disordered lattice spin systems, and concludes with a presentation of the latest developments in the mathematical understanding of mean-field spin glass models. In particular, recent progress towards a rigorous understanding of the replica symmetry-breaking solutions of the Sherrington-Kirkpatrick spin glass models, due to Guerra, Aizenman-Sims-Starr and Talagrand, is reviewed in some detail.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2006

Количество страниц: 380

Добавлена в каталог: 14.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
van Beijeren, H.      72
van den Berg, J.      106
van der Waals, equation of state      29
van der Waals, gas      28
van der Waals, J.D.      28
van Enter, A.C.D.      100 257
van Hemmen, J.L.      250 257
Variance of sum      188 257 465
Variance, conditional      230
Variance, estimation of      154 364
Variance, function      533
Variance, properties      145
Variance, sequence      533
Variance, table of      145
Venn diagram      40
Vibration analysis      586
Waiting times      see “Arrival times of Poisson process”
Weak convergence      54
Wehr, J.      100 111 118
Weiss, P.      39
WGN      see “White Gaussian noise”
White Gaussian noise, bandpass version      584 694
White Gaussian noise, continuous-time definition      686
White Gaussian noise, discrete-time definition      528
White Gaussian noise, miscellaneous      534 677
White Gaussian noise, obtaining discrete-time from continuous-time      583
White noise      556 569 571
Whitening (preemphasis)      661
Wide sense stationary, definition      550
Wide sense stationary, generating realization of      681
Wide sense stationary, jointly distributed      642
Wiener filtering, definition      609
Wiener filtering, filtering      609
Wiener filtering, interpolation      611
Wiener filtering, prediction      611
Wiener filtering, smoothing      611
Wiener random process, computer generation of realization      704
Wiener random process, continuous-time      687 703
Wiener random process, discrete-time      679
Wiener — Hopf equations      623
Wiener — Khinchine theorem      571
Wolfer sunspot data      548
WSS      see “Wide sense stationary”
Yngvason, J.      8
Yule — Walker equations      623
z-transform      800
Zahradn??k, M.      82
Zegarlinski, B.      107
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте