Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Small Ch.G. — Functional Equations and how to Solve Them
Small Ch.G. — Functional Equations and how to Solve Them



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Functional Equations and how to Solve Them

Автор: Small Ch.G.

Аннотация:

This book covers topics in the theory and practice of functional equations. Special emphasis is given to methods for solving functional equations that appear in mathematics contests, such as the Putnam competition and the International Mathematical Olympiad. This book will be of particular interest to university students studying for the Putnam competition, and to high school students working to improve their skills on mathematics competitions at the national and international level. Mathematics educators who train students for these competitions will find a wealth of material for training on functional equations problems. The book also provides a number of brief biographical sketches of some of the mathematicians who pioneered the theory of functional equations. The work of Oresme, Cauchy, Babbage, and others, is explained within the context of the mathematical problems of interest at the time.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 129

Добавлена в каталог: 14.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Oresme, N., Grand Master      2
Oresme, N., graphs of functions      2
Oresme, N., Master of Theology degree      2
Oresme, N., Tractatus      2
Osborne’s rule      48
Oxford      2
Paris      2 7 9
Pascal’s triangle      7
Peacock, G.      11
Periodic function      77 80
Pexider’s equation      39 40
Pexider’s equation, relation to Cauchy’s equation      40
Pexider’s equation, solution      40
Physics      2
Pi (3.14159...)      22
Planar region      6
Planck, M.      93
Poincar?e’s equation      62 67
Polynomial f.e.      79 80
Polynomials      72 76 79—81 91
Polynomials, degree      72 79 80
Polynomials, roots      80 81
Power function      39 82 83 91 109
Power series      81 82
Power series, equality of coefficients      82
Prime factorisation      83
prime factors      84
Prime factors, multiplicity      84
PRIMES      84
Problem-solving journals      16
Problems      26 49 75 89
Problems for Chapter 1      26
Problems for Chapter 2      49
Problems for Chapter 3      75
Problems for Chapter 4      89
Punched cards      11
Quadratic equation      14
Quasiarithmetic mean      51
Quasiarithmetic mean, arithmetic mean      51
Quasiarithmetic mean, geometric mean      51
Quasiarithmetic mean, harmonic mean      51
Quasiarithmetic mean, homogeneous      52
Quasiarithmetic mean, root mean square      51
Quasiarithmetic mean, translative      52
Quasiarithmetic means, equivalence      52
Ramanujan, S.      21—24 73
Ramanujan, S. in J.Indian Math.Soc.      23
Ramanujan, S., birthplace      22
Ramanujan, S., contacts in Indian mathematical community      23
Ramanujan, S., education      22
Recreational mathematics      16
Recursion      21 82
Recursions      20
Reflexivity      58
Regularity conditions      18
Renaissance      2
Representations of groups      17
Root mean square      51
Rousseau, Mme.      9
Royal Society of London      12
Saint-Jean-le-Rond church      9
Saint-Vincent, Gregory of      4—6
Saint-Vincent, Gregory of, Opus geometricum      4 6
Scale factor      6
Schroder’s equation      15 62 81
Schroder’s equation, generalization      67
Schroder’s equation, principal solution      65
Schwarz, H.      93
Second derivative      17
Separation of variables      19
SEQUENCE      21 57
Sequences, problems involving      18
Series      6 8 81 82
Series, convergence      8 81
Series, divergence      8
Series, rules for multiplying      8
Set, closed under multiplication      88
Shrinking transformation      6
Signum function      15
Simultaneous f.e.      13 24
Sine      48
Sine, hyperbolic      48
Splinter      58—61 64 65 92 108 109
Splinter, limit of      59
Squeeze theorem      36
Stretch transformation      6
Stretching transformation      6
Subadditivity      50
Symmetry      58
Taiwan      84
Tangent      48
Tangent, hyperbolic      48
Transitivity      58
Trigonometric functions      10 91
Trigonometric identity      10 48
Uncountable basis      95
Undergraduate mathematics      16
Uniform difformity      3
Uniform functions      4
Uniform intensities      2
Uniform motion      3
Uniform quality      3
Uniformly difform function      4
Uniformly difform motion      3
Uniformly difform quality      3
University mathematics      17
University of Berlin      93
University of Paris      2
Vector space of R over Q      95
Vincze’s equation      40
Vincze’s equation, first solution      41
Vincze’s equation, second solution      42
Washington, DC      88
Woodhouse, R.      11
Year 1348      2
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте