Авторизация
Поиск по указателям
Ash C.J., Knight J., Sevenster A. (Ed) — Computable Structures and the Hyperarithmetical Hierarchy
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Computable Structures and the Hyperarithmetical Hierarchy
Авторы: Ash C.J., Knight J., Sevenster A. (Ed)
Аннотация: This book describes a program of research in computable structure theory. The goal is to find definability conditions corresponding to bounds on complexity which persist under isomorphism. The results apply to familiar kinds of structures (groups, fields, vector spaces, linear orderings Boolean algebras, Abelian p-groups, models of arithmetic). There are many interesting results already, but there are also many natural questions still to be answered. The book is self-contained in that it includes necessary background material from recursion theory (ordinal notations, the hyperarithmetical hierarchy) and model theory (infinitary formulas, consistency properties).
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 1st edition
Год издания: 2000
Количество страниц: 366
Добавлена в каталог: 13.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Recursion Theorem, application 67
Recursive function, partial 4
Recursive function, total 4
Recursive relation 4
Recursive saturation 295
Recursively enumerable 4
Reducibility, many-one 17
Reduct 38
Relation, arithmetical on numbers and functions 76
Relation, computable 3
Relation, intrinsically -c.e. 189
Relation, intrinsically 239
Relation, intrinsically c.e. 192 239
Relation, intrinsically computable 185—187
Relation, intrinsically d-c.e. 189
Relation, relatively 165
Relation, relatively intrinsically 192
Relation, relatively intrinsically 165
Relation, relatively intrinsically 178
Relation, relatively intrinsically 165
Relation, relatively intrinsically a-c.e. 168
Relation, relatively intrinsically computable 185
Relation, relatively intrinsically d-c.e. 189
Relation, semi-computable 3
Relational structure 37 210
Relations, intrinsically computably separable 192
Relatively categorical 175
Relatively stable 177
Relatively intrinsically 253
Relativization of a theorem 15
Remmel 151
Rep(T) 292—294 296 297 309
Rep(T), enumeration of 294 309
Representable set 292
Resplendence 46
Ressayre 127
Rigid 100 198
Rigid, almost 100 263 264
Rogers vi 5 71
Rogers, L. 140
Rosenstein 314
rosser 292
Run of tree with instruction function 215
Run of trees, with instruction function 215 228
s - m - n Theorem 12—14 18
s - m - n Theorem, relativized 16
Satisfaction of predicate formula 37
Satisfaction of propositional formula 34
Satisfaction predicate 52 110
Saturated 46 155
Saturated model 47
Saturation 45 47 127
Schmerl 297
Scott 96 98 99 101 291 292 321
Scott family 96 97 99 174 199 269 291
Scott family, , formally 179 269 273
Scott family, examples 100
Scott family, formally 199
Scott family, formally 175
Scott family, formally c.e. 174 175 197—202 205—208 269
Scott Isomorphism Theorem 96
Scott rank 98
Scott sentence 96 97
Scott set 291—293
Scott set of a model 293
Scott set, appropriate for theory 297 300 302 305 308
Scott set, uncountable 294
Scott Theorem, Isomorphism vi 101
Seetapun 147
Selivanov 143 150 289
Semi-characteristic function 3
Semi-computable 4
Sentence 35
Sentence in infinitary logic 93
Sentence, propositional 34
Separable 260
Separator 12 53 192 319
Separator for a pair of relations 169
Separator, 253 262
Separator, computable 193
Shoenfield 214
Shore viii 206
Shuffle sum of orderings 145 250 251 282 283 315
Single — Valuedness Theorem 84 124
Skolem 84
Slaman 152 160 214
Slinko 206
Smullyan 94
Soare 50 152 309
Solovay 54 291 296 307 308
Special -system 236
Special ( )-instruction function 303
Special ( )-system 236 302
Spector 62 65 82 129
Stable 239 263 264
Stable computably 197 198 203—205 208 209 239 263
Stable relatively 264
Stable relatively computably 197 206
Standard system 293
Stone Representation Theorem 316
Strongly minimal 312 313
Structure for predicate language 36
Structure representing Scott set 296 300
Structure, cardinality of 36
Structure, computable vii
Structure, constructivizable viii
Structure, decidable vii
Structure, empty 36
Structure, interpretation function of 36
Structure, strongly constructivizable viii
Structure, universe of 36
Subformula 34
Subformula of infinitary formula 92
Substructure 38
Sum of orderings 59 314 315
Sum of orderings, infinite 315
Sum of ordinals 59 60
Symbol, constant 34
Symbol, logical 33 34
Symbol, non-logical 33 34
Symbol, operation, or function 34
Symbol, relation, or predicate 34
Symmetric difference 55
TA 51 54 291 292 295 306 307
TA, nonstandard model of 291 296 307 309
Tarski 38 313 320
Tarski Criterion for elementary substructure 38
Tennenbaum 53 294
Term 34
Theory 39
Theory of a structure 51
Theory, complete 39
Theory, completion of 39
Thurber viii 151 281 282 284
Transcendence degree 312
Transfer theorem 143 144
Transfinite induction on ordinal notation 67
Transfinite induction, proof by 58
Transfinite number 58
Transfinite recursion on ordinal notation, computable 67
Transfinite recursion, definition by 59
Transitive set 58
TREE 30
Tree, path through 30
Tree, subtree of 30
Trivial structure 54 128 171
Truth and Forcing Lemma 164—166
Truth of a predicate sentence 37
Truth of propositional formula 34
Turing 4
Turing degree 21
Turing machine 4—6 8 12—15
Turing machine, index for 6
Turing machine, self-replicating 14
Turing machine, universal 4 6
Turing, degree 16
Turing, equivalence 16
Turing, reducibility 16
Type 0 object 23
Type 1 77
Type 1 object 23
Type, complete 46—48 155—157 291 295
Type, complete 297—299 301 302 304 307
Type, complete 291 297 300 301 303
Type, complete 178 309
Type, principal 47 48
Type, realized 46
Ulm 317
Ulm sequence 132 140 141 317
Uniformly computable sequence of structures 279—281
Uniformly computable sequence of structures, coding a set 275
Vandenberg viii
Variable bound 35
Variable free 35
Variable free in infinitary formula 92
Variable individual 34
Vaught 151
Vector space vii 33 37 45 90 100 137 160 166 170 173 177 185—187 194 195 242 243 311 312
Vector space, language of 36
Vector space, theory of 311
Ventsov 176
Vlach viii
Watnik 144 218 219 284 287
Wehner 152 153 155
Well ordering vii 57—59 61 63 64 91 129 142 239 244 245 263 268 314
Well ordering, computable 61 63 65 129 268
Well ordering, hyperarithmetical 129
X-computable infinitary formula 118
Yang 214
Реклама