| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Levine J.P. — Algebraic Structure of Knot Modules |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | |  see “Finite modules” “Product 
  -pairing      48 
  -only torsion      22 
  -primary sequence      20 Alexander module      v
 Blanchfield pairing      48
 Classification      see “Elementary modules” “Product “Rational “Z-torsion
 Crowell condition on
  97 Dedekind
  , criteria in low degrees      95 Dedekind
  , criterion, general      91 3 Dedekind
  , definition      20 Derived module      1
 Derived sequences      2
 Duality in derived sequences, finite case      4
 Elementary modules, classification      36
 Elementary modules, definition      33
 Elementary modules, realization      34
 Finite case, classification of
  17 Finite case, induced product on
  11 Finite case, realization      12
 Finite modules,
  8 (see also “Product structures”) Finite modules, duality      4
 Finite modules, realization      6
 
 | Global fields, hermitian forms      80 Global fields, integral non-singular
  -forms      81 Half-unit      54
 Homogeneous modules      32 (see also Product structures)
 Ideal class group      96
 Ideal Class group, quadratic symmetric case      98
 Product Structure,
  -pairing      48 Rational case, classification      76
 Rational case, classification of
  over global field      80 Rational case, realization      77
 Rational Module      19 (also see “Product structures”)
 Realization theorems      see “Elementary modules” “Finite “Homogeneous “Product “Z-torsion
 Semi-homogeneous modules, example of non-semi-homogeneous      71
 Semi-homogeneous modules, orthogonal decomposition      69
 Semi-homogeneous modules, uniqueness of components      6 8
 Type k      21
 Workable
  50 Z-torsion free case, classification      54
 Z-torsion free case, induced product on
  53 Z-torsion free case, realization for homogeneous      59
 Z-torsion free modules      also see “Elementary modules” “Homogeneous “
 ![]() “ ![]() “Product “Semi-homogeneous “Type Z-torsion free modules, classification in degree < 3      40
 Z-torsion free modules, failure of classification in degree > 3      46
 Z-torsion free modules, realization      23
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |