|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Gross B.H. — Arithmetic on Elliptic Curves with Complex Multiplication |
|
|
Предметный указатель |
37
6 2k
, 13 41
45 57 60
4
= ideles of H 23
58 60
, , n(A) 49 78
45 47
40 60
55 72 77
= Selmer group 53
$T_l(A) 17
17 20
64 66
, 21 23 57 58
, 66
3 26 32
A(P) 1 35 41 67
C , C(i) 73 75 76
C(p) 38
Cl(K) = ideal class-group of K 12
| Complex multiplication 1 12 20
D, 73 74
Descended curve 1 29
Discriminant 5 67 80
Elliptic curve 4
F=Q(j) field of moduli 1 29 34
H = Hilbert class-field of K 1 29.
h = [H:K] = class-number of K 1 34
Isogeny 6 30 32
K = imaginary quadratic field 1 29 34
L(A/F, s) = L-series of A 19 22 58
Minimal model 14 80
Modular form 64 65 8l
Modular invariant j(A) 1 5 23
Modular parametrization 66
O = ring of integers of K 1 29 34
p, , 35 40 42
Q-curve 1 32
q-expansion 65 66 81
Q-rank n(A) 49 72
T, 47 48 49 57
Tate — Shafarevitch group 53 71
Weieretraas model 4
|
|
|
Реклама |
|
|
|