| 
			         | 
		         
		       
		        
			          | 
		          
		        
					| Авторизация | 
		         
		        
					| 
 | 
		          
		        
			          | 
		          
		        
			        | Поиск по указателям | 
		         
		        
			        
					 
				        
					
			         | 
		          
		        
			          | 
		          
			
			         | 
		         
       		 
			          | 
		          
                
                    | 
                        
                     | 
                  
		
			          | 
		          
		        
			          | 
		          
		
             
	     | 
	    
	      | 
	    
	    
            
		 |  
                
                    | Gross B.H. — Arithmetic on Elliptic Curves with Complex Multiplication | 
                  
                
                    | 
                        
                     | 
                 
                                                                
			          | 
	          
                
                    | Предметный указатель | 
                  
                
                    
                               37  
       6 2k  
 ,        13 41  
       45 57 60  
       4  
  = ideles of H      23  
       58 60  
 ,  , n(A)      49 78  
       45 47  
       40 60  
       55 72 77  
  = Selmer group      53  
$T_l(A)      17  
       17 20  
       64 66  
 ,        21 23 57 58  
 ,        66  
       3 26 32  
A(P)      1 35 41 67  
C , C(i)      73 75 76  
C(p)      38  
Cl(K) = ideal class-group of K      12  
 | Complex multiplication      1 12 20  
D,        73 74  
Descended curve      1 29  
Discriminant        5 67 80  
Elliptic curve      4  
F=Q(j) field of moduli      1 29 34  
H = Hilbert class-field of K      1 29.  
h = [H:K] = class-number of K      1 34  
Isogeny      6 30 32  
K = imaginary quadratic field      1 29 34  
L(A/F, s) = L-series of A      19 22 58  
Minimal model      14 80  
Modular form      64 65 8l  
Modular invariant j(A)      1 5 23  
Modular parametrization      66  
O = ring of integers of K      1 29 34  
p,  ,        35 40 42  
Q-curve      1 32  
q-expansion      65 66 81  
Q-rank n(A)      49 72  
T,        47 48 49 57  
Tate — Shafarevitch group      53 71  
Weieretraas model      4  
 |   
                            
                     | 
                  
			  | 
		          
			| Реклама |  
			  | 
		          
			 |  
                             
         |