Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Kunz E. — Introduction to Plane Algebraic Curves
Kunz E. — Introduction to Plane Algebraic Curves



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Introduction to Plane Algebraic Curves

Автор: Kunz E.

Аннотация:

This work is an introduction to commutative ring theory and algebraic plane curves, requiring of the student only a basic knowledge of algebra, with all of the algebraic facts collected into several appendices that can be easily referred to, as needed. Kunz's proven conception of teaching topics in commutative algebra together with their applications to algebraic geometry makes this book significantly different from others on plane algebraic curves. The exposition focuses on the purely algebraic aspects of plane curve theory, leaving the topological and analytical viewpoints in the background, with only casual references to these subjects and suggestions for further reading.

Most important to this text:
* Emphasizes and utilizes the theory of filtered algebras, their graduated rings and Rees algebras, to deduce basic facts about the intersection theory of plane curves
* Presents residue theory in the affine plane and its applications to intersection theory

* Methods of proof for the Riemann-Roch theorem conform to the presentation of curve theory, formulated in the language of filtrations and associated graded rings
* Examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 293

Добавлена в каталог: 10.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Residue class filtration      205
Residue theorem      112
Residue theorem for transversal intersections      118
Riemann — Roch theorem      141 152 153
Riemann’s theorem      153
Ring of rational functions      33
Semigroup, numerical      155
Semigroup, symmetric      183
Separated filtration      199
Simple point      53
Singularity      53
Singularity, degree      148
Singularity, degree of an integral branch      167
Smooth curve      53
Socle      28
Special divisor      141
Standard basis      278
Standard trace      245
Straightedge construction      71 72
Strange point      87
Subscheme      44
Substitution homomorphism      265
Support of a divisor      11 20 131
Tacnode      166
Tangent      51
Tangent cone      53
Tangent of a branch      166
Tensor      237
Tensor, product of algebras      235
Tensor, product of homomorphisms      240
Theorem of Bezout      26 42
Theorem, Brill — Noether      159
Theorem, Cayley — Bacharach      47
Theorem, Humbert      122
Theorem, Luroth      78
Theorem, Maclaurin      49
Theorem, Max Noether      45
Theorem, Miguel      72
Theorem, Mordell — Weil      92
Theorem, Newton      49 125 126
Theorem, Pappus      46
Theorem, Pascal      46 71
Theorem, Riemann      153
Theorem, Riemann — Roch      141 152 153
Total ramification number      157
Trace      247
Transformation formula for residues (integrals)      112
Transitivity of integral extensions      228
Transversal intersection      41 65
Trivial filtration      200
Valuation      225
Valuation ring      224
Value semigroup of a singularity (a branch)      182
Vanishing ideal of a divisor      11
Vanishing ideal of a projective curve      18
Vanishing ideal of an affine curve      8
Vector space of multiples of a divisor      132
Weierstrass, $\rho$-function      96
Weierstrass, gap (gap theorem)      155
Weierstrass, polynomial      272
Weierstrass, preparation theorem      271
Weierstrass, semigroup      155
Zero of a homogeneous polynomial      13
Zero, divisor      11 31 132
Zero, sequence      261
Zero, set      3 14
Zero-dimensional subscheme of $\mathbb{A}^2$      48
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте