Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Differential Geometry: Curves - Surfaces - Manifolds

Авторы: Kühnel W., Hunt B.

Аннотация:

Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in $I\!\!R^3$ that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to helpalong the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 2006

Количество страниц: 376

Добавлена в каталог: 30.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Prism space      310
Product rule      245
Profile curve      78
Projective plane      205 220
Pseudo-Euclidean      270
Pseudo-hyperbolic space      273
Pseudo-Riemannian metric      218
Pseudo-sphere      83 273
Quadratic integral      60
Quaternion algebra      305
Quaternion group      311
Quaternion space      310 311
Quaternionic projective space      336
Quaternions      305
Rank      3
Rank theorem      4
Rectifying plane      20
Relativity theory      219
Relativity, special      33
Ricci calculus      212
Ricci curvature      261 267 291
Ricci tensor      259 337
Ricci, G.      212 248
Riemann sphere      209
Riemann, B.      201
Riemannian connection      225
Riemannian manifold      218
Riemannian metric      218
Rodrigues, O.      73
Rotation group      306
Rotation index      39
Rotation matrix      206
Rotational torus      130
Ruled surface      78 85 93 121
Ruling      85
Saddle point      76
Scalar curvature      152 196 259 267 323 337
Scalar product      100
Scaling      255
Scherk, H. F.      113
Schmidt orthogonalization      13
Schouten tensor      352
Schouten, J. A.      352
Schur, F.      254
Schwarz, H. A.      114
Schwarzschild metric      236 365
Screw-motion      10 88
SCROLL      78
Second fundamental form      69 118 243 267
Sectional curvature      152 248 251—253 290 357
Self-adjoint      68 339
Semi-Riemannian metric      218
Shape operator      68
Shortest path      144 283
Singularity      56 81 83 91 97 104
Slope line      24 52
Space curve      16
Space form      296
Space-like      34 116 270
Space-time      316 317 330 359
Sphere      57 66 74 76 81 82 97 124 128 129 197 270
Spherical coordinates      61 124
Spherical curve      21
Spherical dodecahedral space      310
Spiral      51
Square torus      299
Standard parameters      86
Stiefel manifold      14
Stokes, G.      172 326
Striction line      86 87
Structural equations      170
Structure      207
Submanifold      5 57
Submersion      3 5
surface      55
Surface area      62 99
Surface classification      180
Surface element      56
Surface integral      62
Surface of revolution      78
Surface of rotation      78 119
Symmetries      274
Tangent      8
Tangent bundle      5 234 313
Tangent developable      90
Tangent hyperplane      124
Tangent plane      56
Tangent space      5 6 57 209
Tangent surface      92
Tangent vector      8 17 57 210
Taylor expansion      12 19
Tchebychev grid      128 195
Tensor      241 242
Tensor field      241
Tensor product      242
Tetrahedral group      307
tetrahedron      308
Theorem on turning tangents      41 174
Theorema egregium      148 151 158 239
Theorema Elegantissimum      177
Theory of relativity      323
Third fundamental form      69
Tightness      186 187 189
Time-like      34 116 270
Topological manifold      207
topology      2 207
Torse      90
Torsion      17 20 27 36
Torsion tensor      226
Torus      205 220 222
Torus Knot      32
Torus of revolution      59
Total absolute curvature      42 44 46 184
Total curvature      37 39 186 327
Total mean curvature      130
Trace      257
Tractrix      11 83
Transition function      204
Truncated cube space      310
Umbilic      73
Variation      100
Variation of a metric      319
Variation of arc length      281
Vector field      63 216 243
Vector space      2
Vertex      45
Warped product      197 235 267
Wedge product      168
Weierstrass representation      108
Weingarten equation      140
Weingarten map      68 118 124 243 248 272
Weingarten surface      95 131
Wente-Torus      194
Weyl tensor      346 348 352
Weyl, H.      352
Willmore, T.      130
Winding number      38
Wolf, J.      334
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте