Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua
Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua

Автор: Sokolnikoff I.S.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1990

Количество страниц: 360

Добавлена в каталог: 24.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Laplace developments      19
Laplace’s equation      92
Laplacian      248 249
Laplacian, in cartesian coordinates      92
Laplacian, in curvilinear coordinates      92
Laplacian, in cylindrical coordinates      250
Laplacian, in plane polar coordinates      250
Laplacian, in spherical coordinates      93 250
Length, element of      75 100 110
Length, of a vector      11 194
Levi — Civita      165 276 327
Lifshitz, E.      289
Light rays, deflection of      288
Light, velocity of      264 265
Lindsay, R. B.      200 327
Line, straight      142
Line-element, in space      75 100 110
Line-element, on a surface      147
Linear dependence      6 15
Linear dependence, of vectors      6 15
Linear transformations      10 20 25 29
Linear vector spaces, complex      14
Linear vector spaces, real      10
Lobachevskian geometry      135
Lobachevsky, N.      109
Local coordinates      268
Lorentz — Einstcin transformation      267
Lorentz — FitzGerald contraction      264 267
Lorentz, H. A.      264 265 267
Mach, E.      200
Manifold      9
Manifold, $n$-dimensional      10 193
Manifold, non — Euclidean      76
Manifold, Riemannian      222
Margenau, H.      200 327
Mass, center of      258
Mass, conservation of      273 317
Mass, gravitational      200
Mass, inertial      199 200
Mass, rest of proper      271
Mass-energy relationship      273
Matrices      16 20
Matrices, algebra of      20—25
Matrices, characteristic equation of      37
Matrices, characteristic values of      33 37 50
Matrices, diagonal      22
Matrices, Herraitean      48
Matrices, inverse      23
Matrices, orthogonal      30
Matrices, rank of      16
Matrices, real symmetric      34
Matrices, reduction to diagonal form      31
Matrices, similar      27 30 38
Matrices, singular      22
Matrices, unitary      48
Maupertuis, P. M. L.      219
McConnell, A. J.      332 178 180 181 184 207 290 327
Mean curvature      187
Measure numbers of a vector      8
Mechanics of a particle      197
Mechanics of fluids      319
Metric geometries      111
Metric space      10 111
Metric tensor      74
Metric tensor, derivatives of      89
Metric tensor, of a surface      147
Michal      3 290 327
Minimum principles      219
Minkowski’s acceleration      269
Minkowski’s velocity      269
Moment of force      243
Momentum      199
Motion of a particle on a curve      207
Motion of a particle on a surface      210
Motion, equations of, for a continuous medium      309
Motion, for a fluid      322
Motion, for a particle      201 271
Motion, irrotational      325
Mousnier’s theorem      189
Murnaghan, JF. D.      34 290 318 327
Natural system      224
Navier equations      319
Navier equations, of fluid motion      322
Navier — Stokes’ hydrodynamical equations      324
Neighborhood of functional arguments      153
Newton, I.      198 199 242 257
Newtonian law of gravitation      242
Newtonian laws      198
Non-holonomic systems      225 232
Normal coordinates      48 236
Normal curvature, of a surface      189
Normal curvature, principal      191
Normal line to a surface      175
Normal modes of vibration      48
Normal vector, to a curve      136
Normal vector, to a surface      176
Normal vector, to a surface curve      171
Oontravariant tensor      60
Ortho-normal systems of vectors      8 11 13
Orthogonal curvilinear coordinates, condition for      122
Orthogonal transformations      27 30
Orthogonality of vectors      11 30 150
Osculating plane      137
Parallel postulate      109
Parallel vector fields, along a curve      133
Parallel vector fields, along a surface curve      165
Parallelism of vectors      166
Parallelogram law of addition      4
Particles, dynamics of      199
Particles, free moving      206
Particles, relativistic dynamics of      275
Pendulum, double      235
Pendulum, simple      206 233
Pendulum, spherical      238
Perihelion constant      262
Perihelion of Mercury      284 287
Perihelion, advance of      285
Physical components of a vector      8 126 205
Planetary orbits      280
Poincare, II.      116 265
Poisson’s equation      246 254
Poisson’s ratio      317
Potential functions      275
Potential, clastic      315
Potential, gravitational      245
Potential, velocity      325
Primary inertial system      198
Principal curvatures of a surface      190
Principal directions of strain      302
Principal directions of stress      307
Principal directions on a surface      191
Principal normal vector      137
Principal radii of a surface      192
Principal strains      303
Principal stress      307
Principle of least action      219
Problem of two bodies      257
Proper mass      271
Pythagoras, formula of      3 13
Quadratic forms      35
Quadratic forms, characteristic values of      33 37 47
Quadratic forms, classification and properties of      44
Quadratic forms, index of      45
Quadratic forms, rank of      45
Quadratic forms, reduction of      35 40 46
Quadric of Cauchy, strain      302
Quadric of Cauchy, stress      307
Quadric, canonical form of      45
Quotient laws of tensors      68
Rainich, G. Y.      276 287 288 289 327
Rank of a tensor      61
Rapidity      268
Reciprocal base systems      126
Relative scalar      72
Relative tensors      72 107
Relativistic dynamics      275
Relativity, general theory of      275—289
Relativity, restricted theory of      264—274
Ricci tensor      94
Ricci, G.      61
Ricci’s identity      92
Ricci’s theorem      89
Rice, J.      89
Riemann — Christoffel tensor      89 91
Riemann — Christoffel tensor, properties of      93
Riemannian geometry      112
Riemannian space      96 112
Riemann’s dissertation      110
Rigid body displacements      293
Rigid virtual displacement      311
Riz, P.      318
Robertson, H, P.      289
Saint Venant, B.      300
Savile, H.      109
scalar      56
Scalar density      72
Scalar product      5 14 121
Scalar product, triple      126
Schild, A.      327
Schr$\ddot{o}$dinger, E.      289
Schwarzschild, K.      276
Schwarzschild’s line element      280
Serret — Frenet formulas      139
Seugling, W. R.      301
Shearing strains      298
Shears      307
Similar transformations      27
Skew-symmetric systems      101
Skew-symmetric tensors      71
Small oscillations      236
Sokolnikoff, I. S.      53 246 300 318 327
Space curves, geometry of      135
Space, dimensionality of      6 9
Space, Euclidean      4 96
Space, metric      10 111
Space, Riemannian      96
Space-time manifold      265
Spaces, $n$-dimensional      9 10
Spaces, complex linear vector      14
Spaces, Euclidean      4 39
Spaces, linear vector      6
Spaces, non — Euclidean      76
Spectral lines, shift of      288
Spherically symmetric static field      277— 280
Stakgold, I.      318
State, equation of      322
Stevinus, S.      4
Stokes, G. G.      246 323
Stokes’ Theorem      249
Straight line, equation of      142
Strain invariants      303
Strain quadric      301
Strain tensor      293
Strain, in cartesian coordinates      296
Strain, infinitesimal      300
Strain, physical components of      296
Strain, principal directions of      302
Strain, velocity      321
Stress invariants      307
Stress quadric      307
Stress tensor      306
Stress tensor, symmetry of      309
Stress vector      305
Stress, analysis of      305—307
Stress, principal      307
Stress, types of      307
Stress-strain relation      316
Summation convention      17
Surface tensors      173
Surface, curves on      146
Surface, element of      151
Surface, equations of      143
Surface, fundamental forms for      147
Surface, imbedded in $R_{n}$      195
Surface, intrinsic geometry of      145
Surface, particle on a      210
Surfaces, coordinate      118
Surfaces, in space      171
Surfaces, isometric      167
Symmetric systems      100
Symmetric tensors      71
Synge, J. L.      238 262 289 327
Tangent vector, to a space curve      136
Tangent vector, to a surface      175
Tangent vector, to a surface curve      165
Tensor concept      60
Tensor derivatives      178
Tensor equations      66
Tensor fields      63
Tensors, absolute      73
Tensors, algebra of      66—68
Tensors, associated      76
Tensors, calculus of      84 89
Tensors, components of      51 62
Tensors, contraction of      07
Tensors, contravariant      62 03
Tensors, covariant      61 62
Tensors, covariant differentiation of      85—87
Tensors, fundamental      76
Tensors, intrinsic differentiation of      131
Tensors, metric      74
Tensors, mixed      03
Tensors, quotient laws for      68
Tensors, rank of      62
Tensors, relative      72
Tensors, Riemann — Christoffel      89 91
Tensors, symmetric and skew-symmetric      71
Tensors, tensor differentiation of      178
Tensors, types of      014 3
Thomas, T. Y.      98 327
Time      197 203 205
Tolman, R.      207 289
Torsion      138
Total curvature      108 187
Trajectories as geodesies      229
Trajectory, of a dynamical system      228
Trajectory, of a particle      201
Transformation theorems      210—250
Transformations, admissible      53
Transformations, affine      10 25
Transformations, by contravariance      57
Transformations, by covariance      57
Transformations, by invariance      55
Transformations, functional      52
Transformations, Galilean      203
Transformations, induced      60
Transformations, linear      10 25 29
Transformations, of coordinates      10 52 145
Transformations, of rotation      29
Transformations, orthogonal      27
Transformations, similar      27 30
Transformations, unitary      48
Unitary transformations      48
Vandermondian determinant      34
Variation, of strain tensor      313
Variation, symbol of      213—216
Variation, symbol of, of function      156 310
Variation, symbol of, of integral      157
Varied path      214
Veblen, O.      9 61 327
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте