Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Stone C.J.D. — Course in Probability and Statistics
Stone C.J.D. — Course in Probability and Statistics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Course in Probability and Statistics

Àâòîð: Stone C.J.D.

Àííîòàöèÿ:

This author's modern approach is intended primarily for graduate-level mathematical statistics or statistical inference courses. The author takes a finite-dimensional functional modeling viewpoint (in contrast to the conventional parametric approach) to strengthen the connection between statistical theory and statistical methodology.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 838

Äîáàâëåíà â êàòàëîã: 17.04.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Negative multinomial distribution      194
Nelder, J.A.      681
Newton — Raphson method      712 717
Neyman — Pearson lemma      656
Neyman, Jerzy      407
Nominal confidence bound      642 729
Nominal confidence interval      642 729
Nonadditive function      417
Nonidentifiable space      405 438
Nonidentifiable space, least-squares approximation in      483
Nonidentifiable space, least-squares estimate in      496
Nonidentifiable space, maximum-likelihood estimation in      700
Nonnegative, integer-valued random variable distribution function and quantiles      55—58
Nonnegativity of distribution      14
Nonsingular matrix      444
Nontrivial linear parameter      356 521
Nonzero function      427
Norm      456 495
Normal approximation      149 767
Normal approximation to binomial distribution      179—186
Normal approximation to gamma distribution      156—157
Normal approximation to Poisson distribution      202
Normal approximation with half-integer correction      180—181
Normal approximation, central limit theorem and      158
Normal distribution      145—155 766—767.
Normal distribution, defined      148
Normal distribution, density function      148
Normal distribution, distribution function      148
Normal distribution, mean      148
Normal distribution, multivariate      263—273
Normal distribution, quantiles      148
Normal distribution, standard deviation      148
Normal distribution, variance      148
Normal equations      485—493 497—504
Normal equations, defined      485
Normal equations, matrix form      486 501
Normal equations, system of      485 498
Normal linear regression model with random inputs      422
Normal linear regression model, conditional form of      422
Normal linear regression model, defined      419
Normal linear regression model, experimental version      421
Normal linear regression model, linear parameters of      520—521
Normal linear regression model, normal one-sample and multisample models as      421—422 526 553—555
Normal multisample model      354—357 776—777
Normal multisample model as normal linear regression model      421—422 526 553—555
Normal one-sample model      353 54 515—516 776
Normal one-sample model as normal linear regression model      421—422 515—516
Normal regression model      419
Normal regression model, experimental version      420
Normalizing function      663
Null hypothesis      366
Odds      53
Odds ratio      638
One-sample model      421—422
One-sample model, normal      353—354 515—516
Order statistics      178
Ordered pair      7
Ordered pair, random      29
Orthogonal array      579—634
Orthogonal array, defined      586
Orthogonal basis      461
Orthogonal complement      580
Orthogonal components      580
Orthogonal functions      457
Orthogonal linear spaces      579
Orthogonal linear spaces, direct sum of      579
Orthogonal projection      470—484
Orthogonal projection, defined      471
Orthonormal basis      461
Orthonormal functions      458
p-value      342 371 376 553 576 643 669 737 742
P-value, exact      651—661
Pairing      385
Pairwise independent random variables      583
Parallel, components m      75
Parallelogram law      467
Parameter, inverse-scale      204
Parameter, location      63
Parameter, random      330—337
Parameter, scale      63
Partition      6
Partitioned matrix      758—759
Percentiles      46
Permutation      165
Pilot plant experiment      407—409 603—608
playing cards      294
Poisson approximation      200—201
Poisson distribution      195—203 769
Poisson distribution as exponential family      662—663
Poisson distribution, defined      195
Poisson distribution, exact P-values and      660
Poisson distribution, mean      195
Poisson distribution, modes      198
Poisson distribution, normal approximation to      202
Poisson distribution, probability function      195 198
Poisson distribution, second moment      196
Poisson distribution, standard deviation      195—196
Poisson distribution, variance      195—196
Poisson one-sample and multisample models      636 786—787
Poisson process      204—208
Poisson process, defined      205
Poisson regression      673—750
Poisson regression function      677
Poisson regression model      677
Poisson regression model, linear      677
Polar coordinates      260—261
Polya's urn scheme      291
Polymer experiment      396—406 502—504
Polymer experiment, data      396—397
Polynomial      429
Pooled estimate of variance      355
Posterior density function      331
Posterior distribution      331
Power      341
Power transformation      65—68
Power, Neyman — Pearson lemma and      656—658
Power, off test      377—378
Prediction      316—322
Prediction, linear      213—215
Prediction, mean squared error of      213
Prediction, multiple linear      236—242
Predictor      213
Predictor, best      214 317
Predictor, error of      213
Predictor, linear      214 236—242
Predictor, mean squared error of      213
Predictor, root mean squared error of      214
Prior distribution      331
Prior distribution, subjective      334—335
probability      12 14
Probability function      33—38 761
Probability function, conditional      283—284
Probability function, defined      33
Probability function, design      582
Probability function, joint      189
Probability function, marginal      331
Probability function, mode of      176
Probability measure      20
Probability theory      1
Probability, conditional      275
Probability, subjective      3
Proper subset      5
Proper subspace      433
Pseudorandom numbers      126
Pythagorean Theorem      457
Quantile function      46
Quantiles      762—763. See also Appendix E
Quantiles for continuous random variable      46—55
Quantiles for nonnegative, integer-valued random variable      55—58
Quartiles      46
Random inputs      422—423 681—682
random matrix      219
Random matrix, expectation of      219
Random ordered pair      29
Random parameters      330—337
Random sample      112 765—766
Random variables      23
Random variables, artificial      582
Random variables, bounded      96
Random variables, constant      33
Random variables, continuous      38
Random variables, correlated      217
Random variables, dependent      70
Random variables, design      582
Random variables, discrete      33
Random variables, independent      70
Random variables, indicator      35
Random variables, integer-valued      24
Random variables, positive      24
Random variables, real-valued      24
Random variables, sequences of      77—78
Random variables, standardized      105
Random variables, transformations of      29—32
Random variables, uncorrected      217
Random vector      219
Random vector, expectation of      219
Randomization      380 620—634
Randomized complete block design      623
Rate      205
Rate function      677
Rate, relative      669
Regression      314
Regression coefficients      416 671
Regression function      302 675
Regression function, additive      417
Regression function, least-squares approximation to      474
Regression function, least-squares estimate of      474 495—496
Regression model      415
Regression model, experimental version      419
Regression model, heteroskedastic      419
Regression model, homoskedastic      419
Regression model, homoskedastic linear      419
Regression model, linear      415
Regression model, normal      419
Regression model, normal linear      419
Regression to the mean      314
Rejection region      340 366—367
Relative frequencies      2 10
Relative frequencies, law of      12—13
Relative frequency interpretation      2
Relative root mean squared error      216
Reliability      59
Repetitions      412
Residual      397 423
Residual sum of squares (RSS)      397 423—424 495 497
Response variable      324 411 675
Restriction      442
Risk      638
Risk function      675
Risk, relative      638
Rolle's theorem      446
Root mean squared error      214
Roulette      18—19
Run      412
Sample correlation      383
Sample covariance      383
Sample distribution      5—14
Sample distribution, defined      10
Sample standard deviation      116
Sample variance      116—118 353 357 513
Sample variance, defined      116
Sample variance, variance vs.      118
Sampling with replacement      17—18 73 185 289—290
Sampling without replacement      17—18 73 185 285—300
Sampling without replacement, means, variances, and covariances under      287—290
Saturated models      784—785 793
Saturated models, maximum likelihood estimation for      692—697
Saturated space      405 447—454 585
Saturated space, defined      448
Scale invariant      108
Scale parameter      63
Schwarz inequality      215 456
Screening experiment      590
Second moment      99
Seed      126
Sequence of independent random variables      77—78
Series, components in      74
Set function      4
Set theory, notation and terminology of      5—8
Sign test      659
Simple experiment      9
Simulation      121—133 630—632
Singular matrix      444
Size of set      3 15
Size of test      341—343
Sleeping drug experiment      378—385
span      429
Spurious effect      326
Squared error of prediction      213
Squared multiple correlation coefficient      241 508
Squared multiple correlation coefficient, adjusted      578
Squared norm      456 495
Standard Cauchy distribution      51
Standard Cauchy distribution as t distribution      347
Standard Cauchy distribution, density function      50
Standard Cauchy distribution, distribution function      51
Standard Cauchy distribution, mean      89—90
Standard Cauchy distribution, quantiles      51
Standard Cauchy distribution, variance      109
Standard deviation      100
Standard error      118—119 355 357 521 641 666 726
Standard logistic distribution      53
Standard logistic distribution, density function      52
Standard logistic distribution, distribution function      52
Standard logistic distribution, mean      95
Standard logistic distribution, quantiles      52
Standard logistic distribution, variance      109
Standard normal distribution      146
Standard normal distribution, chi-square and      344—345
Standard normal distribution, density function      145
Standard normal distribution, distribution function      146 828
Standard normal distribution, mean      147
Standard normal distribution, mode      146
Standard normal distribution, quantiles      147
Standard normal distribution, second moment      147
Standard normal distribution, standard deviation      147
Standard normal distribution, variance      147
Standard normal random variables, Box — Mueller generation of      261—262
Standardized random variable      105
Statistic      116
Statistical Design and Analysis of Experiments (John)      409
Statistical Methods in Engineering and Quality Assurance (John)      396
Statistics for Experimenters (Box, Hunter and Hunter)      407 605
Step-halving      712
Stepwise addition and deletion      558
Stirling's formula      135
Stratification      290
Strong Law of Large Numbers      113
Student's t distribution      347
Subjective priors      334—335
Subjective probability      3
Submodel      560—568
Subset      5
Subset, proper      5
subspace      433
Subspace, orthogonal projection onto      479—483
Subspace, proper      433
Subspace, submodel and      560—568
Sugar beet experiment      407—408 526—537 597 620—634
Sugar beet experiment, data      360 407—408
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå