Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Buckingham R.A. — Numerical Methods
Buckingham R.A. — Numerical Methods



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Numerical Methods

Автор: Buckingham R.A.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1962

Количество страниц: 597

Добавлена в каталог: 15.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Interpolation, Lagrangian      71 116 481
Interpolation, Lagrangian coefficients      77
Interpolation, Lagrangian, error of      84
Interpolation, mixed formulas      126
Interpolation, subtabulation      121
Interpolation, with two variables, by differences      482
Irwin, J.O.      498 600
Isaacson, E.      626
Iterative methods      246—284 392 423 464 638
Iterative methods, Aitken’s $\delta^2$ process      258 260 283 393 430
Iterative methods, Bernoulli — Aitken method      277 394
Iterative methods, for elliptic equations      638
Iterative methods, for Fredholm equations      464
Iterative methods, for latent roots of matrices      392
Iterative methods, for linear equations      423
Iterative methods, for quadratic factors      266
Iterative methods, for roots of algebraic equations      246
Iterative methods, general properties      256
Iterative methods, limits of error      432
Iterative methods, order of process      256
Iterative methods, scalar products, use of      395
Jackson, J.      226
Jahnke, P.R.E.      xii
Jeffreys (WKB) method      199
Jeffreys, H.      201
Jeffreys, H., and Jeffreys, B, S.      xi 158 186 188 192 203 254
John, H.A.      422
Jordan, C.      312 323 572
Jordan, W.      356 357
Kaplan, S.A.      514
Kempner, A.J.      276
Kerawakt, S.M.      323
Kincaid, W, M.      403
Laderman, J.      329
Lagrange multipliers      304
Lagrange, J.L.      71
Lagrangian methods      69—90
Lagrangian methods, cubature      496
Lagrangian methods, differentiation      77 579
Lagrangian methods, interpolation      71 481
Lagrangian methods, quadrature      78 580
Lagrangian methods, step-by-step integration      217
Laguerre polynomials      326
Lanczos, O.      329 356 382 392 411 413 419 432 628
Langer, B.E.      203
Laplace formulas      157
Latent roots and vectors of matrices      371 392 456
Latent roots and vectors of matrices, Bayleigh’s principle      457
Latent roots and vectors of matrices, complex roots      407
Latent roots and vectors of matrices, defective matrices      387 407
Latent roots and vectors of matrices, definitions      371
Latent roots and vectors of matrices, deflation      401
Latent roots and vectors of matrices, deflation, alternatives to      420—421
Latent roots and vectors of matrices, Lanczos’ method      382 411
Latent roots and vectors of matrices, matrix polynomials, use of      403
Latent roots and vectors of matrices, numerical examples      397 402 403 408 410 416 417
Latent roots and vectors of matrices, repeated real roots      407
Latent roots and vectors of matrices, scalar products, use of      383 395
Latent roots and vectors of matrices, symmetric matrices      397
Latent roots and vectors of matrices, symmetry properties      397 530
Latent roots of differential and integral equations      456 526
Latent roots of differential and integral equations, elliptic equations      562
Latent roots of differential and integral equations, Milne’s method      526
Latent roots of differential and integral equations, numerical examples      460 469 473 529
Latent roots of differential and integral equations, Rayleigh’s principle      458
Latent roots of differential and integral equations, relaxation, use of      459
Least squares, method of      298—333
Least squares, method of, continuous approximation      323
Least squares, method of, Legendre’s principle      298
Least squares, method of, normal equations      300 303 331 339
Least squares, method of, orthogonal polynomials, use of      312
Least squares, method of, validity      305
Legendre, A.M.      298 487
Legendre’s principle      298
Lehmer, D.H.      285 293
Leverrier, U.J.J.      418
Levy, H.      174 244
Lewy, H.      514 525
Liebmann, H.      539
Lin, Shi-Nge      272
Linear independence      298
Loud, W.S.      245
Lovitt, W.V.      464
Lowan, A.N.      329 507 577
Lubbock, J.W.      163 165
Lucas      91
Mack, C.      268 270
Maclaurin, C.      157
Madelung’s transformation      195
Margenau, H.      325
Matrix definitions      336 370
Matrix definitions, $\lambda$-matrix      371
Matrix definitions, adjoint matrix      358 373
Matrix definitions, characteristic function      371
Matrix definitions, defective matrix      372
Matrix definitions, inverse of matrix      346
Matrix definitions, latent roots and vectors      371
Matrix definitions, norm      432
Matrix definitions, order, rank, degeneracy      336
Matrix definitions, product of matrices      337
Matrix definitions, scalar product      372
Matrix definitions, trace or spur      374
Matrix definitions, transposed matrix      337
Matrix inversion      346 434
Matrix inversion, comparison of methods      349
Matrix inversion, improvement of inverse      360 434
Matrix inversion, symmetrical matrix      346 349
Matrix inversion, triangular matrix      351
Matrix inversion, unsymmetrical matrix      352
Miller, J.C.P.      xii 16 29 31 41 126 205
Miller, W.Lash      180
Milne, W.E.      xi 164 207 217 235 238 240 274 305 312 327 361 504 519 523 526 532 541 5^5
Milne-Thomson, L.M.      xii 93
Mineur, T.O.N.      xi
Minimized iterations, method of      357 411
mistakes      12
Mistakes, avoidance of      12
Mistakes, causes of      15
Mistakes, sum checks, use of      358 441
Mitchell, K.      285
Modified differences (“throwback”)      119 484
Moments      61 573
Moments, of ascending and descending factorials      61
Moments, of central factorials      64
Moments, power      61 63 66
Moments, use in fitting data      319
Morris, J.      356 432
Motzkin, T.S.      443
Moulton, F.R.      180
Murphy, G.M.      325
Neville, E.H.      507
Newton — Raphson method      250 262
Newton, Isaac      79 92 95 108 252 254 434
Newton’s divided difference polynomial      95
Nicolson, P.      516.520
Nogrady, H.A.      265
Normal equations      300 303 331 339
Nystrdm, E.J.      224
Olver, F.J.W.      209 217 277 285 292
Orthogonal polynomials      306 325
Orthogonal polynomials, Jacobi      326
Orthogonal polynomials, Legendre, Hermite, Laguerre      325
Orthogonal polynomials, Tchebycheff (Chebyshev)      306 326
O’Brien, G.G.      514
Parabolic equations      514
Parabolic equations, boundary conditions      513
Parabolic equations, definition      511
Parabolic equations, diffusion equation, analytical solution of      520
Parabolic equations, du Fort — Frankel method      518
Parabolic equations, finite difference approximations      515
Parabolic equations, instability of solution      515
Parabolic equations, numerical example      521
Parabolic equations, relaxation, possible use of      524
Parabolic equations, solution by other methods      523
Partial differential equations      see “Differential equations”
Partial differentiation      502
Pearson, Karl      482 484 488 492
Perturbation method      197
Picard, C.E.      176 180
Pollak, L.W.      329
Polynomial equations      264—294
Polynomial equations, cubic      264
Polynomial equations, mechanical root-finding      276
Polynomial equations, methods for solving, Bairstow      274
Polynomial equations, methods for solving, Bernoulli — Aitken      277
Polynomial equations, methods for solving, Brodetsky — Smeal      292
Polynomial equations, methods for solving, Dietzold      394
Polynomial equations, methods for solving, Lin      272
Polynomial equations, methods for solving, Olver      292
Polynomial equations, methods for solving, Porter and Mack      268 271
Polynomial equations, methods for solving, root-squaring      284
Polynomial equations, quadratic factors of      266
Polynomial equations, quartic      268 271
Polynomial equations, sextic      268 296
Polynomial equations, test functions, use of      267 270
Polynomial equations, zeros of power series      293 (see also “Algebraic equations”)
Polynomials      56
Polynomials, curve-fitting, use in      299 312
Polynomials, factorial expansions for      57 58
Polynomials, importance for interpolation      70 481
Polynomials, Lagrange’s polynomial      71 473 481
Polynomials, Newton’s polynomial      96
Polynomials, solution of integral equations      471
Polynomials, sums and differences of      56
Polynomials, tabulation of      59 (see also “Orthogonal polynomials”)
Porter, A.      268 270
Precision of numbers      5
Prony’s method      329
Quadratic factors      266
Quadrature      78 129
Quadrature, by central differences      132
Quadrature, by Euler — Maclaurin series      158*9
Quadrature, by matrix inversion      447
Quadrature, errors      82 85 88 135
Quadrature, estimates, improvement of      89
Quadrature, Gregory’s formula      130 149 165 366
Quadrature, Newton — Cotes formulas      79 580
Quadrature, partial range formulas      83 580
Quadrature, repeated integration      151
Quadrature, Steffensen’s open formulas      82 580
Quadrature, subtraction of singularities      139 (see also “INDEX OF USEFUL FORMULAS”)
Quartic equations      268 271
Raphson, J.      250
Rayleigh’s principle      457
Rees, M.      526
Regular singularity      185
Reiersol, O.      391
Relaxation method      436 449 550
Relaxation method, accuracy of solutions      454
Relaxation method, checking of residuals      441
Relaxation method, for elliptic partial equations      540 550
Relaxation method, for first-order equations      453
Relaxation method, for latent roots      459
Relaxation method, for linear algebraic equations      436
Relaxation method, for linear differential equations      449
Relaxation method, for non-linear equations      455
Relaxation method, for parabolic equations      524
Relaxation method, further applications      561
Relaxation method, Gauss’ transformation      441
Relaxation method, group operations      439
Relaxation method, limitations      443 463
Relaxation method, numerical examples      438 439 443 451 460 552 554
Relaxation method, operations table      438
Relaxation method, over- and under-relaxation      441 541
Relaxation method, “sinking of residuals”      540 551
remainders      574 579
Residuals      359 437 441 444 540
Richardson, L.F.      90 403 539
Robinson, G.      xi 106 114 300 329 331
Rolle’s Theorem      84
Root-squaring method      284
RosenhLd, L.      xii
Rounding errors      3 18 22 136 215 ?60
Routh, E.J.      246
Sadler, D.H.      16
Salzer, H.E.      91 161 507 577
Samuelson, P.A.      256 379
Sastdy, M.      312 323
Scarborough, J.B.      xi
Scheen, W.L.      29
Schiff, L.      203
Seidel, P.L.      423
Severn, R.T.      523 524
Shaw, F.S.      566
Shea, J.D.      312
Sheppard, W.F.      51
Shortley, G.H.      542 550
Significant figures      6
Simpson, T.      79 80
Simpson’s rule      79 80 82 88 90 141 496
Sine integral      191
Smeal, G.      292
Sommerfeld, A.      511
Souihwell, B.V.      423 437 658 563 565
Square roots      40 252
Steffensen, J.F.      xi 82 83 86 93 123 158 165 576
Stein, P.      424
Stiefel, E.      356
Stirling numbers      57 58 468—473
Stirling’s interpolation formula      110 134 333 390 483
Stokes, G.G.      191
Stumpff, K.      329
Subtabulation      121
Subtabulation, bridging differences, use of      123
Subtabulation, end-figure process      123
Summation      155
Summation, by Euler — Maclaurin formulas      156 167
Summation, by Lubbock and Woolhouse formulas      163 167
Summation, by parts      167 168
Summation, of alternating series      161
Sums      46 155
Sums, backward (ascending)      47
Sums, central      51
Sums, definite      43 50 156
Sums, forward (descending)      48
Sums, indefinite      47 155
Sums, mean      51
Sums, of factorials      53 54 56
Sums, relations with tabular values      50
Sums, repeated      50 156
Symbolic method      143 480
Symbolic method, central difference and averaging operators      146 480
Symbolic method, displacement and difference operators      143 480
Symbolic method, relations with integral and differential operators      147 481
Symbolic method, summation operators      155
Symbolic method, validity      154
Synthetic division      59 267
Szegd, G.      327
Tables      16
Tables, Barlow      xi 14 22
Tables, Chambers [6]      xi 21 24 77 108 134
Tables, checking entries      25 31
Tables, construction of normal      18 203
Tables, critical      16
Tables, Interpolation and Allied      xii 77 115 120 124 127
Tables, interpolation coefficients (for use with differences)      115
Tables, interpolation in normal      18 76 116
Tables, inverse interpolation      22
Tables, Lagrangian interpolation coefficients      77
Tables, Milne — Thomson $\&$ Comrie [4]      xii 21
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте