Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Aldous J.M., Wilson R. — Graphs and Applications: An Introductory Approach
Aldous J.M., Wilson R. — Graphs and Applications: An Introductory Approach



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Graphs and Applications: An Introductory Approach

Авторы: Aldous J.M., Wilson R.

Аннотация:

Discrete Mathematics is one of the fastest growing areas in mathematics today with an ever-increasing number of courses in schools and universities. Graphs and Applications is based on a highly successful Open University course and the authors have paid particular attention to the presentation, clarity and arrangement of the material, making it ideally suited for independent study and classroom use. An important part of learning graph theory is problem solving; for this reason large numbers of examples, problems (with full solutions) and exercises (without solutions) are included.
Accompanying the book is a CD-ROM comprising a Graphs Database, containing all the simple unlabelled graphs with up to seven vertices, and a Graphs Editor that enables students to construct and manipulate graphs. Both the Database and Editor are simple to use and allow students to investigate graphs with ease. Computing Notes and suggested activities are provided.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 444

Добавлена в каталог: 11.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Heuristic algorithm for vertex colouring      288
Hierarchical tree      140
I(d)      125
I(G)      123
icosahedron      46 270 272
Icosian game      71
if      352
If and only if      352
In-degree      92
In-degree sequence      93
Incidence matrix      123 125
incident      27 86
Incompatible edges      257
Indirect proof      349
Induction      350
Infinite face      248
Instant Insanity      51
Interpersonal relationships      53
Interval graph      127
Irreducible Markov chain      132
Isomer      4 175
Isomer enumeration      175
Isomorphic digraphs      87
Isomorphic graphs      29
Isomorphism      29
Join      6 16 26 85
Joocy-chunks      106
k-colourable graph      279
k-colouring      279
k-cube      50 81
k-dimensional cube      50 81
k-edge colourable graph      304
k-edge colouring      304
Kekule, A.      180
Kempe, A.      295
Kirchhoff, G.      139
Knight's tour problem      79 333
Koenig's Theorem      311
Koenig, D.      311
Koenigsberg bridges problem      9 20 64 333
Kruskal's algorithm      184 185
Kruskal, J.      184
Kuratowski's theorem      261
Kuratowski, K.      261
Labelled graph      32
Legendre, A.M.      271
Length of walk      39 95
Line graph      58
Listing problem      22
Listing, J.B.      77
Location of transmitting stations      297
London Underground      2
Longest path problem      337 344
Loop      26 85
Lower bound for $\chi(G)$      284
Lower bound for $\chi^\prime(G)$      309
Lower bound for solution to Travelling Salesman Problem      194 196
Lower bound for t(G)      323
Main diagonal      114
Map colouring problem      293
Markov chain      131
Markov chain, irreducible      132
Matching      318
Mathematical induction      350
Mathematical statement      348
Matrix      113
Matrix, adjacency      113 115
Matrix, incidence      123 125
Matrix, overlap      128
Matrix, transition      131
Maze      8
Menger's theorem for digraphs (arc form)      232
Menger's theorem for digraphs (vertex form)      235
Menger's theorem for graphs (edge form)      229
Menger's theorem for graphs (vertex form)      234
Menger, K.      235
Method of paired comparisons      106
Methods of proof      348—353
Minimally braced framework      159
Minimum bracing      159
Minimum bracing, new from old      159 162
Minimum connector      183
Minimum connector problem      184 337 338
Minimum dominating set      297 338
Minimum spanning tree      183
Model      19
Multiple arcs      85
Multiple edges      26
Mutation      128
Necessary and sufficient condition      352
Necessary condition      352
Negative feedback cycle      102
nested parentheses      151
Network      17
Network, pipeline      18
Network, road      17
Network, social      53 101
Network, telecommunication      17 236
Niche overlap graph      100
Non-deterministic computer      340
Non-deterministic polynomial-time problem      340
Non-planar graph      244
NP      340
NP-complete problem      342 344
NP-problem      340
Null graph      45
O(N)      334
octahedron      46 270 272
Only if      352
Open trail      42
Open walk      42
Optimal connectivity      237
Optimization problem      20 23 337
Ore's Theorem      73
Ore, O.      73
Orientable graph      109
Out-degree      92
Out-degree sequence      93
Outcomes of experiments      147
Over-braced framework      10
Overlap matrix      128
P      340
P-problem      340
Paraffin      3 175
Path      40 95
Path graph      50
Path, semi-Hamiltonian      74
Path, st-      226 231
Petersen graph      47 144 255 262
Petersen, J.      47
Pipeline network      18
Planar graph      244
Planarity testing      256 263
Plane drawing      244
Platonic graph      46
Platonic solid      46 270 273
Platonic solid, dual of      273
Poinsot, L.      77
Polynomial-time algorithm      338 339
Polynomial-time problem      340
Polynomial-time reducibility      342
Positive feedback cycle      102
Potential      204
Prim's algorithm      188 189 337 338
Principle of Mathematical Induction      350
Principle of strong induction      350
Printed circuits      5 243 321
Proof by contradiction      349
Proof by mathematical induction      350
Proof direct      349
Proof indirect      349
Proof involving if and only if      352
Pruefer sequence      165
Pruefer's construction      165
Pruefer, H.      165
r-Regular Graph      43
Random walk      130
Ranking in tournaments      106
Rectangular framework      10 20 152
Recurrence relation      171
Reductio ad absurdum      349
Refuse collection      296
Regular graph      43
Regular graph, examples      45—47
Regular polyhedron      269
Reliable telecommunication network      236
Rigid framework      10
Rigidity criterion      154
Road network      17
Root      146
Rooted tree      146
Rooted tree, equivalent forms      150
Rotating drum problem      104
Route-finding      2
Row of rectangular framework      12 153
S(G)      325
Same digraphs      87
Same graphs      7 28
Satisfiability problem      342
Scheduling examinations      319
Semi-Eulerian graph      67
Semi-Eulerian trail      67
Semi-Hamiltonian graph      74
Semi-Hamiltonian path      74
separate      227 231
Sequence dating      126
Seriation      126
Shannon's Theorem      308
Shannon, C.E.      303 307
Shortest path algorithm      204 211 338
Shortest path algorithm, tabular method      206
Shortest path problem      23 204 337 338
Signed digraph      101
Signed graph      54
Simple digraph      85
Simple graph      26
Sink      18
Six colour theorem for planar graphs      284
Snow-ploughing      212 213
Social networks      53 101
Sorting tree      150
Source      18
Spanning forest      161
Spanning subgraph      325
Spanning tree      144 158
Spanning tree, construction of      145 335
Spanning tree, minimum      183
st-paths      226 231
st-paths, arc-disjoint      231
st-paths, edge-disjoint      226
st-paths, vertex-disjoint      226 231
STACK      149
State of Markov chain      131
Statement      348
Stereographic projection      271
Storing chemicals      277 292
Street-cleaning      212 213
Strong induction      350
Strongly connected digraph      96 119
Subdigraph      90
Subdivision of graph      260
Subgraph      33
Subgraph, spanning      325
Sufficient condition      352
t(G)      322
t(G), lower bound for      322 323
Tabular method for shortest path algorithm      206
Telecommunication network      17 236
Teleprinter's problem      104
tetrahedron      46 270 272
Thickness      322
Tour graph      296
Tournament      106
Trail      40 95
Trail, closed      42 95
Trail, eulerian      63 97
Trail, open      42
Trail, semi-Eulerian      67
Transition matrix      131
Transition probability      131
Traveller's problem      62
Travelling salesman problem      13 23 191 337 339 344
Travelling salesman problem, lower bound for solution      196
Travelling salesman problem, upper bound for solution      192
TREE      49
Tree, bicentral      179
Tree, binary      147
Tree, branching      147
Tree, central      179
Tree, conceptual      140
Tree, equivalent definitions of      143
Tree, family      140
Tree, grammatical      148
Tree, hierarchical      140
Tree, minimum spanning      183
Tree, properties of      140
Tree, rooted      146
Tree, sorting      150
Tree, spanning      144
triangle      42
Tutte, W.T.      325
Unbalanced situation      54
Underlying graph      92
Unlabelled digraph      89
Unlabelled graph      31
Upper bounds for $\chi(G)$      281 282 284
Upper bounds for solution to Travelling Salesman Problem      192
Upper bounds for$\chi^\prime(G)$      306 307 308 309
Utilities problem      4 6 21 28 242 333
Valency      35
Vertex      6 16 26 85
Vertex colouring      277
Vertex connectivity      221 222
Vertex cutset      223
Vertex decomposition      292
Vertex decomposition, colouring problems      292—296
Vertex decomposition, domination problems      296—298
Vertex-disjoint st-paths      226 231
Vizing's theorem      307
Vizing's theorem, extended version      308
Vizing, V.G.      307
Walk      39 95 118
Walk, closed      42 95
Walk, open      42
Weight of edge      13
Weighted graph      13
Whitney, H.      235
Wire-colouring      303 318
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте