Авторизация
Поиск по указателям
Goryunov V.I., Lyashko O.V. — Dynamical Systems VI: Singularity Theory I, Vol. 6
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Dynamical Systems VI: Singularity Theory I, Vol. 6
Авторы: Goryunov V.I., Lyashko O.V.
Аннотация: The theory of singularities is an important part of various branches of mathematics: algebraic geometry, differential topology, geometric optics, etc. Here the focus is on the singularities of smooth maps and applications to dynamical systems - in particular, bifurcations. This includes the study of bifurcations of intersections of stable and unstable cycles. Along with the formal algebraic and analytic aspects of the theory, the authors consider global topological problems related to invariants. The authors have in mind a student reader, mathematician, or physicist, who wishes to learn the modern techniques of local mathematical analysis as an instrument for applied studies or a specialist in one of the applied areas who is looking for the necessary mathematical tools.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1993
Количество страниц: 245
Добавлена в каталог: 08.04.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Map, stable 149
Map, stratified 180
Map, transverse to a submanifold 151
Map, Vieta 123
Map, Whitney 68
Maps, transversality 152
Markushevich, A.I. 87 231
Martinet, J. 156 170 231
Maslov index 192
Maslov, V.P. 192 231
Mather, J. 17 151 154 156 157 160—162 170 171 175 179 180 231
Matov, V.I. 181 182 231
Maurin map 191
Maxwell stratum 208
May, J.P. 140 225
McCrory, C. 217 231
McKay, J. 134 231
Milnor fibration 69
Milnor lattice 84
Milnor, J. 12 19 39 40 51 139 202 221 232
Miniversal deformation 15
Minkowski volume, mixed 162
Mirror 119
Modality 16 18
Modality, intrinsic 45
Module over a system of rings 171
Monodromy operator along a loop 57
Monodromy operator, classical 53
Monomial 35 37
Monomial, diagonal 42
Monomial, lower 42
Monomial, upper 42
Morin, B. 154 157 158 191 232
Morphism of Hodge structures 106
Morphism of mixed Hodge structures 107
Morse (nondegenerate) critical point 11
Morse function 56
Morsification 56
Morsification, purely real 72
Multigerm 162
Multiplicity of a critical point 13
Multiplicity of a germ 161
Multiplicity, algebraic 161
Multiplicity, geometric 161
Multisingularity 204
Mumford, D. 103 229
Muraviev, V.V. 33 34
Napoleon, B. 7
Nekhoroshev, N.N. 71 229
Newton degree of a monomial 45
Newton diagram 35
Newton diagram, suitable 103
Newton filtration 45
Newton order of a series 45
Newton polyhedron 35 162
Newton-homogeneous function 45
Nikulin, V.V. 30 226
Nilsson, N. 97 232
Normal form 22
Number, characteristic 205
Number, Coxeter 122
Number, Hodge 111
Number, Petrovski 118
Ole nik, O. A. 118 223 232
Operator, semisimple 109
Operator, unipotent 109
Operator, variation 53
Order of a diffeomorphism 41
Order of a geometric section 108
Order of a series 37
Order of a series, Newton 45
Order of a vector field 41
Order of determinacy of a germ 174
Orlik, P. 39 40 232
Oval 118
Pair of dimensions, nice 160
Pair of dimensions, semi-nice 160
Palamodov, V.P. 161 232
Parabolic singularity 82
Pellikaan, R. 169 170 232
Period map 91
Period map, associated 99
Period map, infinitesimally nondegenerate 100
Period map, principal 102
Period map, stable 100
Perron, P. 71 232
Petrovski , I.G. 118 232
Petrovskii number 118
Pham singularity 77
Pham, F. 71 77 89 232
Phillips, A. 214 215 232
Picard — Fuchs equation 96
Picard — Lefschetz operator 59
Picard, E. 51 56 232
Pinkham, H. 86 232
Platonova, O.A. 217
Po naru, V. 168 171 214 233
Poincar polynomial 39
Polar curve 78
Polterovich, L.V. 211 224
Pontryagin class 192
Porteous, I.R. 159 160 188—191 233
Poston, T. 221 233
Primitive ideal 169
Principal part of a geometric section 108
Principal part of a series 103
Quadratic form of a singularity 64
Quasihomogeneous function 36
Quasihomogeneous function, nondegenerate 36
Ramanujam, C.P. 70 230
Real function 72
Reflection 119
Regular singularity of a differential equation 96
Residue form 92
Resolution of singularities 26 103 188
Roberts, M. 168 233
Rokhlin, V.A. 138 233
Ronga, F. 168 183 188—190 201 233
Root of a quasihomogeneous algebra 43
Root system 127
Rossi, H. 91 93 228
Saint — Donat, B. 103 229
Saito, K. 40 85 100 134 233
Saito, M. 232
Samo lenko, A.M. 233
Sauvage, L. 96
Schaeffer, D. 168 169 221 228
Schmid, W. 108 109 228 233
Schwarz, G. 171 233
Sebastiani, M. 76 77 94 233
Section 89
Section, covariantly constant 89
Section, geometric 92
Section, holomorphic 89
Section, nondegenerate 98
Segal, G.B. 141 233
Semi-quasihomogeneous function 37
Semi-quasihomogeneous series 37
Semicontinuity set of the spectrum 114
Semisimple operator 109
Serganova, V.V. 34 71
Series of singularities 23
Series, -nondegenerate 104
Series, semi-quasihomogeneous 37
Serre, J. — P. 91 109 234
Set of spectral pairs 111
Sharko, V.V. 207 234
Shcherbak, O.P. 217
Shifrin, T. 217 231
Shil’nikov, L.P. 222
Shoshita shvili, A.N. 38 234
Shustin, E.I. 8 218 234
Shvarts, A.S. 142 234
Siersma, D. 132 169 234
Simart, G. 56 232
Simple function 18
Simple loop 59 69
Simple singularity 20
Singer, I.M. 119 223
Singularities, almost equivalence 147
Singularity 11
Singularity, bimodal 18
Singularity, elliptic 82
Singularity, hyperbolic 83
Singularity, of class 154
Singularity, parabolic 82
Singularity, Pham 77
Singularity, regular, of a differential equation 96
Singularity, simple 20
Singularity, tangential 216
Singularity, unimodal 18
Slodowy, P. 26 234
Smale, S. 142 213 214 234
Solomon, L. 126 234
Spectral pair 111
Spectrum of a singularity 111
Springer, T.A. 123 234
Stable cohomology class of complements of discriminants 145
Stagnaro, E. 117 234
Stasheff, J.D. 139 202 232
Steenbrink, J.H.M. 95 105 110 112 114 116 234
Stewart, I.N. 221 233
Stiefel — Whitney class 139
Stiefel — Whitney class, total 188
Stiefel — Whitney class, universal 139
Stratified submanifold 152
Stratum, = const 18
Subgroup, geometric 172
Subgroup, nice geometric 173
Subgroup, strongly closed 177
Support of a power series 35
Support of a quasihomogeneous function 43
Swallowtail 19
Swallowtail, generalized 123
Swallowtail, unfurled 211
System of ideals 171
System of paths, admissible 79
System of paths, distinguished 60
System of paths, weakly distinguished 60
System of rings 171
System of rings, adequately ordered 171
System of sets, stable 187
Sz cz, A. 202 234
Tangential singularity 216
Teissier, B. 20 78 183 234
Thom polynomial 186 187
Thom, R. 76 77 151 180 181 187 193 196 212 233—235
Timourian, I.G. 71 235
Togliatti, E. 117 235
Topological complexity of an algorithm 142
Tougeron, J. — C. 14 235
Trivialization 93
Trotman, DJ.A. 152 180 235
Truncated versal deformation 20
Tyrina, G.N. 17 82 235
Unimodal function 18
Unimodal singularity 18
Unipotent operator 109
Va nshtein, F.V. 125 140 235
Vanishing cohomology bundle 90
Vanishing cycle 55 58
Vanishing homology bundle 90
Vanishing inflection 217
Varchenko, A.N. 18 20 33 38 45 71 83 87 93—95 98 101 104 105 108—112 114—117 119 130 132 151 161 163 181 211 221 223 235 236
Variation operator 53
Varley, R. 217 231
Vasil’ev, V.A. 9 23 34 141—143 145—147 161 165 169 170 174 183 191 194 197—200 204—206 216 223 236
Vector field (formal) 41
Versal deformation 15 17 167
Vieta map 123
Vinberg, E.B. 34
Viro, O.Ya 118 219 236 237
w.h.e.-principle 213
Wagreich, P. 39 232
Wajnryb, B. 87 237
Wall, C.T.C. 136 160 161 167 174 175 178 179 237
Walls of a chamber 120
Wassermann, G. 168 237
Weight filtration 107 109
Weinstein, A. 12 237
Wells, R.O. 106 237
Weyl group 127
Whitney conditions a and b 179
Whitney map 68
Whitney stratification 180
Whitney umbrella 150
Whitney umbrella, unfolded 203
Whitney, H. 14 71 149 179 180 212 237
Wilson, L.C. 174 178 237
Wirthm ller, K. 179 183 227 237
Zakalyukin, V.M. 33 126 168 237
Zeta function of monodromy 102
Реклама