Авторизация
Поиск по указателям
Trefethen L.N., Bau D. — Numerical Linear Algebra
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Numerical Linear Algebra
Авторы: Trefethen L.N., Bau D.
Аннотация: Numerical Linear Algebra is a concise, insightful, and elegant introduction to the field of numerical linear algebra. Designed for use as a stand-alone textbook in a one-semester, graduate-level course in the topic, it has already been class-tested by MIT and Cornell graduate students from all fields of mathematics, engineering, and the physical sciences. The authors' clear, inviting style and evident love of the field, along with their eloquent presentation of the most fundamental ideas in numerical linear algebra, make it popular with teachers and students alike.
Numerical Linear Algebra aims to expand the reader's view of the field and to present the core, standard material in a novel way. It is a perfect companion volume to the encyclopedic treatment of the topic that already exists in Golub and Van Loan's now-classic Matrix Computations. All of the most important topics in the field, including iterative methods for systems of equations and eigenvalue problems and the underlying principles of conditioning and stability, are covered. Trefethen and Bau offer a fresh perspective on these and other topics, such as an emphasis on connections with polynomial approximation in the complex plane.
Numerical Linear Algebra is presented in the form of 40 lectures, each of which focuses on one or two central ideas. Throughout, the authors emphasize the unity between topics, never allowing the reader to get lost in details and technicalities. The book breaks with tradition by beginning not with Gaussian elimination, but with the QR factorization—a more important and fresher idea for students, and the thread that connects most of the algorithms ofnumerical linear algebra, including methods for least squares, eigenvalue, and singular value problems, as well as iterative methods for all of these and for systems of equations.
Students will benefit from the many exercises that follow each lecture. Well-chosen references and extensive notes enrich the presentation and provide historical context.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2002
Количество страниц: 361
Добавлена в каталог: 07.04.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Matrix, positive definite see "Hermitian positive definite matrix"
Matrix, random 96 114 167—171 189 233 240 244 262 271 334
Matrix, random orthogonal 65 114 120
Matrix, random sparse 300 309
Matrix, random triangular 96 128 167
Matrix, skew-Hermitian 16 187
Matrix, sparse 232 244 300—301
Matrix, symmetric 11 172
Matrix, Toeplitz 68 318 337 342
Matrix, triangular 10 15 49 240
Matrix, tridiagonal 194 218
Matrix, unit triangular 62 148
Matrix, unitarily diagonalizable see "Normal matrix"
Matrix, unitary 14—16 119 163 187
Matrix, Vandermonde 4 53 64 78 137 289 292 337
Matrix, well-conditioned 94
matrix-matrix multiplication 5
matrix-vector multiplication 3 93 330
Memory hierarchy 59
Minres 293
Multigrid methods 317 326
Multiplicity of an eigenvalue, algebraic 183
Multiplicity of an eigenvalue, geometric 183
Multipole methods 232 245 326 339
Nested dissection 245
NETLIB 330
Newton — Cotes quadrature formula 289 341
Newton's method 101 231
Nondefective matrix 185—186
Nonnormal matrix 186 258
Nonsingular matrix 7
Normal distribution 96 171 240
Normal equations 81 82 130 137 141 204
Normal matrix 92 173 187 201
Norms 17—24 331
Norms, 1-, 2-, 4-, -, p- 18
Norms, equivalence of 37 106 117
Norms, induced 18
Norms, matrix 18 22
Norms, vector 17
Norms, weighted 18 24 294
Normwise analysis 127 334
NullSpace 7 33
Nullspace, computation of 36
Numerical analysis, definition of 321—327
Numerical range 209
O ("big O") 103—106
O( ) 104
One-to-one function 7
Operation count 58—60
Orthogonal matrix 14 218
Orthogonal polynomials 285—292 341
Orthogonal polynomials approximation problem 288
Orthogonal projector 43—47 56 81 83 129
Orthogonal triangularization 69—70 148
Orthogonal vectors 13
Orthogonality, loss of 66—67 282—283 295
Orthonormal basis 36
Orthonormal vectors 13
Outer product 6 22 24 109 see
Overdetermined system 77
Overflow 97
p-Norm 18
Pade approximation 311 341
Panel methods 245
Parallel computer 66 233
Partial differential equations 53 244 248 316—318 332
Partial pivoting 156 160 336
Permutation matrix 34 157 220
Pivot element 155
Pivoting in Gaussian elimination 155— 162 336
Polar decomposition 331
Polynomial 4 101 181 283
Polynomial of a matrix 259 265 318
Polynomial, approximation 246 258 268—269 298—299 340—341
Polynomial, Chebyshev 292 300
Polynomial, interpolation 78 96 292
Polynomial, Legendre 53 54 64 68 285—292
Polynomial, monic 183 259
Polynomial, orthogonal 285—292
Polynomial, preconditioner 318
Polynomial, quintic 192
Polynomial, roots 92 101 110 190 191 227 338
Positive definite matrix see "Hermitian positive definite matrix"
Potential theory 279 283—284 341
Power iteration 191 204—206
Powers of a matrix 33 120 182 189
PRECISION 98
Preconditioning 274 297 313—319 326 342
Principal minors 154 214
Problem, formal definition 89 102
Problem, instance 89
Problem-solving environment 63
Projector 41 331—332
Projector, complementary 42
Projector, oblique 41
Projector, orthogonal 43—47 56 81 83 129
Projector, rank-one 14 46
Pseudo-minimal polynomial 261
Pseudoinverse 81—85 94 129 335
Pseudospectra 201 265 338 340
Pseudospectra, computation of 201 265 340
Pythagorean Theorem 15 81
Q portrait 169—170
QMR (quasi-minimal residuals) 310—311 341
QR algorithm 211—224 239 253—254 338
QR factorization x 36 48—55 48—55 83 253 332
QR factorization, full 49
QR factorization, reduced 49
QR factorization, with column pivoting 49 143
Quadrature 285—292
Quasi-minimal residuals see "QMR"
RADIX 98
random matrix 96 114 167—171 189 233 240 244 262 271 334
Random matrix, orthogonal 65 114 120
Random matrix, sparse 300 309
Random matrix, triangular 96 128 167
RANGE 6 33
Range, computation of 36
Range, sensitivity to perturbations 133—134
Rank 7 33 55
Rank, computation of 36
Rank-deficient matrix 84 143
Rank-one matrix 35 see
Rank-one perturbation 16 230
Rank-one projector 14 46
Rank-revealing factorization 336
Rank-two perturbation 232
Rayleigh quotient 203 209 217 254 283
Rayleigh quotient, iteration 207—209 221 338
Rayleigh quotient, shift 221 342
Rayleigh — Ritz procedure 254
Recursion 16 230 249
Reflection 15 29 see
Reflection, of light 136
Regression 136
Regularization 36
Residual 77 116
Resolvent 201
Resonance 182
Richardson iteration 274 302
Ritz matrix 276
Ritz values 255 257 278
Rootfinding see "Polynomial roots"
Rotation 15 29 31 see
Rounding 99
Rounding, errors 321—327
Row, rank 7
Row, vector 21
Schur complement 154
Schur factorization 187 193 337
Secular equation 231
Self-adjoint operator 258
Shadowing 335
Shifts in QR algorithm 212 219—224
Similar matrices 184
Similarity transformation 34 184
Simultaneous inverse iteration 219
Simultaneous iteration 213—218 253—254
Singular value 8 26
Singular value decomposition see "SVD"
Singular vector 26
Skeel, condition number 334
Skeel, Robert D. 326
Skew-Hermitian matrix 16 187
Software 330
SOR (successive over-relaxation) 318 339
Sparse, direct methods 339
Sparse, matrix 232 244 300—301
Spectral abscissa 189 258
Spectral methods 53 255 317 326 332
Spectral radius 24 189
Spectrum 181 201
Splitting 317—318
Square root 58 91 127
SSOR (symmetric SOR) 318
Stability 57 66 72 84 89 102—113 326
Stability, formal definition 104
Stability, physical 182 258
Stable algorithm see "Stability"
Stationary point 203 283
Steepest descent iteration 302
Stiefel, Eduard 293 341
Strassen's algorithm 247 249 330 340
Sturm sequence 228
SubMatrix 9 333
Subtraction 91 108
Superellipse 18
SVD (singular value decomposition) 25—37 83 113 120 142 201 322 331
SVD (singular value decomposition), computation of 36 113 234—240 339
SVD (singular value decomposition), full 28
SVD (singular value decomposition), reduced 27
Symbolic computation 101 324
Symmetric matrix 11 172
TFQMR (transpose-free QMR) 311 341
Three-step bidiagonalization 238—240
Three-term recurrence relation 229 276 282 287 291
Threshold pivoting 336
Tilde ( ) 103
Toeplitz matrix 68 318 337 342
Trace 23
Translation-invariance 261 269
TRANSPOSE 11
Transpose-free iterations 311
Traub, Joseph 327
Triangle inequality 17
Triangular matrix 10 15 49 240 triangular"
Triangular orthogonalization 51 70 148
Triangular system of equations 54 82—83 117 121—128
Triangular triangularization 148
Tridiagonal biorthogonalization 305—306
Tridiagonal matrix 194 218
Tridiagonal orthogonalization 305—306
Tridiagonal reduction 194 196—201 212
Turing, Alan 325 333 335 342
Underdetermined system 143
Underflow 97
Unit, ball 20
Unit, sphere 25
Unit, triangular matrix 62 148
Unitarily diagonalizable matrix see "Normal matrix"
Unitary, diagonalization 187—188
Unitary, equivalence 31
Unitary, matrix 14—16 119 163 187
Unitary, triangularization 188
Unstable algorithm see "Stability"
Vandermonde matrix 4 53 64 78 137 289 292 337
von Neumann, John 325 335 336
Wavelets 245
Weighted norm 18 24 294
Well-conditioned matrix 94
Well-conditioned problem 89 91
Wilkinson, James H. 115 325 330 335 336
Wilkinson, James H., book by 331 337
Wilkinson, James H., polynomial 92
Wilkinson, James H., shift 222 224
Zerofinding see "Polynomial roots"
Ziggurat 75
\ operator in Matlab 85 138 177 337
~ 59
Реклама