Авторизация
Поиск по указателям
Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics)
Автор: Hijab O.
Аннотация: This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. The book contains many remarkable features: * complete avoidance of /epsilon-/delta arguments by instead using sequences * definition of the integral as the area under the graph, while area is defined for EVERY subset of the plane * complete avoidance of complex numbers * heavy emphasis on computational problems * applications from many parts of analysis, e.g. convex conjugates, Cantor set, continued fractions, Bessel functions, the zeta functions, and many more * 344 problems with solutions in the back of the book
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 1st edition
Год издания: 1997
Количество страниц: 313
Добавлена в каталог: 05.04.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
230
207
152
163
7
9
3
9
95
168 181 212 220
213
186 218
206
211
, , 212
180
a | b 10
Absolute value 13
AGM 182
AGM curve 214
Algebraic order 58
angle 100
ArcCos 97
Archimedes’ constant 95
arcsin 97
arctan 99
Area 115
Area, additivity 123
Area, affine invariance 126
Area, dilation invariance 117
Area, monotonicity 118
Area, naive 116
Area, of a parallelogram 122
Area, of a rectangle 119
Area, of a triangle 122
Area, reflection invariance 118
Area, rotation invariance 122
Area, subadditivity 118
Area, translation invariance 116
Arithmetic progressions 223
Asymptotic equality 186 197 218
Asymptotic expansion 230 231
B(x, y) 193
Bailey — Borwein — Plouffe series, bell-shaped curve 189
Bernoulli function 206
Bernoulli numbers 206
Bernoulli series 206
Bessel function 171 181 196
beta function 193
Binomial coefficient 201
Binomial theorem 81
Binomial theorem, Newton’s generalization 91
Bound lower 4
Bound upper 4
Cantor set 111
Cantor set, area of the 126
Cauchy order 35
Cauchy — Schwarz inequality for integrals 152
Cauchy — Schwarz inequality in the plane 101
Chain rule 64
Codomain 2
Compact 39 41
Complement 2
Completeness property 4
Continued fractions 12 25 38 169 174
Continuity 45
Continuity, from the left 50
Continuity, from the right 50
Continuity, in two variables 178
Continuity, modulus of 48
Continuity, under the integral sign 178
Continuity, under the summation sign 180
Continuity, uniform 51
Continuity, uniform modulus of 51
Convex conjugate 81
Cosecant 99
cosh 86
Cosine 94
Cotangent 99
coth 205
Cover 115
Critical point 65
Critical value 65
de Morgan’s law 2
Decimal expansions 27
decimal point 28
Delta function 143
Derivative 61
Derivative, partial 189
Differentiation 61
Differentiation, under the integral sign 189
Differentiation, under the summation sign 195
DIGITS 27
Dilation 6 99 117
Dilation, centered 117
Discontinuity, jump 47
Discontinuity, mild 48
Discontinuity, removable 47
Discontinuity, wild 48
Distance 100
Domain 2
Dominated convergence theorem for integrals 170
Dominated convergence theorem for series 179
Domination 170
Duplication formula 201
Entire 89
entropy 201
Euclidean motion 99
Euler product 222
Euler — Maclaurin, derivative 227
Euler — maclaurin, formula 229
Euler’s constant 152
Even 9 67
Even, part 67
Expansion, base of 28
Expansion, binary 28
Expansion, decimal 27
Expansion, hexadecimal 28
Expansion, ternary 28
Factorial of a natural 28
Factorial of a real 164
Fatou’s Lemma 167
Fourier transform 181 196
Fractional part 10
Functional equation, AGM 186
Functional equation, theta 212
Functional equation, zeta 221
Functions 2
Functions, algebraic 55
Functions, bounded 127
Functions, concave 75
Functions, continuous 45
Functions, convex 75
Functions, decreasing 44
Functions, differentiable 61
Functions, elementary 229
Functions, exponential 57
Functions, increasing 44
Functions, logarithmic 57
Functions, monotone 44
Functions, negative part 128
Functions, nonnegative 127
Functions, positive part 128
Functions, power 55 56
Functions, rational 47
Functions, signed 128
Functions, smooth 74
Functions, strictly concave 75
Functions, strictly convex 75
Functions, strictly decreasing 44
Functions, strictly increasing 44
Functions, strictly monotone 44
Functions, theta 212
Functions, transcendental 56
Fundamental theorem 145
Gamma function 163
Gaussian, function 189
Gaussian, integral 188
Golden mean 38
Greatest integer 10
Heat equation 217
Homogeneity 182
Inductive 7
Inductive, hypothesis 8
Inductive, step 8
inf 4
Infimum 4
Infinite product 203
Infinite product for 210
Infinite product for sin 209
Infinite product for sinh 203
Integrability of nonnegative functions 128
Integrability of signed functions 129
Integral test 140
Integrals, additivity 134
Integrals, continuity 139
Integrals, continuity at the endpoints 137
Integrals, differentiability 144
Integrals, dilation invariance 132
Integrals, integration by parts 148
Integrals, linearity 147
Integrals, monotonicity 131
Integrals, of nonnegative functions 128
Integrals, of signed functions 129
Integrals, substitution 148
Integrals, translation invariance 132
Interior 113
Intermediate value property for continuous functions 50
Intermediate value property for derivatives 74
Intersection 2
interval 12
Interval, compact 13
Interval, open 13
Interval, punctured 42
Inverse function theorem for continuous functions 54
Inverse function theorem for differentiable functions 69
Irrationals 14
Laplace transform 172 195
Laplace transform of 211
Laplace’s theorem 198
Limits from the left 43
Limits from the right 43
Limits lower 19
limits of functions 42
Limits of monotone sequences 18
Limits of sequences 19
Limits upper 19
Log-convex 167
L’Hopital’srule 73
Machin’s formula 108
Maclaurin series 85
Mappings 2
Mappings, bijective 2
Mappings, composition of 2
Mappings, injective 2
Mappings, invertible 3
Mappings, surjective 2
Maximum 5
Maximum principle 81
Maximum, global 65
Maximum, local 65
Mean value theorem 66
Mean value theorem, generalized 72
Mean, arithmetic 182
Mean, arithmetic-geometric 182
Mean, geometric 182
Method of exhaustion 110 153
Minimum 5
Minimum, global 65
Minimum, local 65
Monomial 46
Monotone convergence theorem for integrals 164
Monotone convergence theorem for series 166
Multiplicative 224
n! 28
nth root 14
Numbers, algebraic 58
Numbers, integers 9
Numbers, natural 7
Numbers, rational 9
Numbers, real 3
Numbers, transcendental 58
O(g(x)) 230
Odd 9 67
Odd part 67
Parity 8
Partial sum 25
Partition 44
Partition, mesh of a 52
Paving 115
PI 95
Piecewise, constant 52 136
Piecewise, continuous 147
Piecewise, differentiable 153
Polar coordinates 98
Polynomial 46
Polynomial growth 199
Polynomial, coefficients of a 46
Polynomial, degree of a 46
Power series, differentiability of 89
PRIMES 10
Primitives 102
Primitives, integration by parts 104
Primitives, linearity 104
Primitives, substitution 105
Radius of convergence 88
RANGE 2
Ratio Test 88
Rectangle, compact 40 114
Rectangle, open 40 114
Reflection 6
Relation 2
Remainder 83
Remainder, Cauchy form 84
Remainder, integral form 150
Remainder, Lagrange form 84
Riemann integrable 142
Riemann sum 137 141
Root test 88
Rotation 99
Sawtooth formula 219
Secant 99
SEQUENCE 16
Sequences, bounded 19
Sequences, Cauchy 31
Sequences, convergent 23
Sequences, decreasing 17
Sequences, error 31
Sequences, increasing 17
Sequences, lower 18
Sequences, monotone 18
Sequences, of sets, increasing 154
Sequences, sub- 23
Sequences, upper 18
Series 25
Series, absolutely convergent 31
Series, alternating 30
Series, alternating version 37
Series, cauchy product 37
Series, comparison test 27
Реклама