Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Korner T.W. — Exercises in Fourier Analysis
Korner T.W. — Exercises in Fourier Analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Exercises in Fourier Analysis

Àâòîð: Korner T.W.

Àííîòàöèÿ:

A collection of exercises on Fourier analysis that will thoroughly test the understanding of the reader is arranged chapter by chapter to correspond with An Introduction to Fourier Analysis. For all who enjoyed that book, this companion volume will be an essential purchase.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1993

Êîëè÷åñòâî ñòðàíèö: 395

Äîáàâëåíà â êàòàëîã: 05.04.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abel, behaviour on circle of convergence      67 100
Abel, brilliant stroke      155
Abel, convergence test      67
Abel, integral equation      277 281—283
Abel, Summation Formula      66 80
Abel, theorem on product of series      100
African Eve      371
Almost periodic functions      36—38 133
Apery, 'Miraculous demonstration'      172—173
Approximation      see "Rate of convergence"
Bachelier, vindicated      375—377
Band limited functions      231—235 241—243
Bernoulli justifiable pride      69
Bernoulli numbers      68—71 78 222—223 263—264 see
Bernoulli polynomials      68—71 73—74 76
Bernstein approximation theorems      41—43 54
Bernstein inequalities      10 176 188—189 240—241
Bernstein polynomials      25—26 246
Bessel functions      321—325
beta function      273—275
Beta function, incomplete, Phillip Hall's view of      275
Beukers, proof of Apery's result      173—175
Black boxes      226—229 294—297
Blown up, Gibbs phenomenon      59
Bounded variation, functions of      55—58 204—205
Brent and Salamin, computation of pi      333—334
Brownian motion, construction of      366—369
Brownian motion, Fourier series of      372
Brownian motion, Levy's theorem on uniqueness of      374—377
Brownian motion, nowhere differentiable      371—372
Byrnes, hosts hostile tribes      242
Cantor, existence of transcendentals      144—145
Cantor, uniqueness theorem      111—113
Caratheodory's lemma for convex sets      185
CAT (computer assisted tomography)      318—319
Causality conditions      229 234—236 294
Central limit theorem      51
Champagne, good, offer of      139
Change of variable for Fourier transform      314
Change, how to count      259—262
Chebychev      see "Tchebychev"
Compact discs (articles of commerce)      234
Concave function, Jensen's inequality for      124—125
Convergence of Fourier sums      55—58 200 203—205
Convex function      see "Concave function"
Convex sets      122—123 185—186
Crinkles in nature      140 143
Cyber-punk Tripos question      371
de la Vallee — Poussin, prime number theorem      358—365
De Moivre's theorem      78—80
Depression, text book induced      151
Dido's problem      218
Difference equation, linear, how to solve      13—14
Differential equations, elementary functions, used to define      88—91
Differential equations, existence of solutions for      85—89
Differential equations, linear, how to solve      15 248—249
Differential equations, numerical solution of      93—94
Differential equations, rate of growth of solutions for      91—93
Dirichlet convergence test      66
Dirichlet evaluation of Gauss sum      329
Dirichlet lemma on approximation      34—35 299
Dirichlet original proof of convergence of Fourier sums      203—205
Dirichlet pigeonhole principle      35
Dirichlet problem, Neuman problem, related to      107—110
Dirichlet problem, obviously not soluble on physical grounds      116—117
Dirichlet problem, obviously soluble on physical grounds      115—116
Dirichlet problem, punctured plane, solution for      106
Dirichlet series      352 356—357
Divergent Fourier series, Fejer's example      80—81
Divergent Fourier series, Kahane and Katznelson, theorem of      82—84
Divergent Fourier series, Kolmogorov's everywhere divergent example      301—305
Divergent Fourier series, rate of divergence      64—66 202
Divergent Fourier transform      190
Doubly periodic functions      see "Elliptic functions"
Eigenvalues via minimisation      157—163
Elliptic functions, properties and constructions      147—155 236—239
Elliptic functions, why so called      155
Elliptic integrals, equidistribution      11—13 15—16 130—133
Elliptic integrals, link with elliptic functions      155
Elliptic integrals, spectacular use of      332—334
Euler conjectures law of quadratic reciprocity      339
Euler equality (four squares)      300—301
Euler formula for Bernoulli numbers      70 222—223 263—264
Euler gamma      292 349 350 354
Euler infinite product for sine      285—286
Euler neat formula of      56
Euler superstar of superstrings      275
Euler Taylor series for tan      70
Euler totient function      335
Euler zeta of even integers      68 222—223
Euler — Maclaurin summation formula      61—62 71—77 131 350 353—354
Factorial function      see "Gamma function"
Feedback      see "Black boxes"
Fejer      11 80—81 181—183
Feller, proof of Stirling's formula      290—291
Feynman, anecdote      207
Fractional integral      275—277 281—283
Function      see "Under specific name"
Gamma function, and Beta function      273—274
Gamma function, definition      270
Gamma function, duplication formula      271—273 288—290
Gamma function, factorial, natural extension of      271—273
Gamma function, formula involving      277 see "Watson's
Gamma, Euler's      292 349 350 354
Gauss computation of pi      284 331—334
Gauss formula for factorial function      272—273
Gauss proves law of quadratic reciprocity at age nineteen      338—339
Gauss sum      326—330 339
Generalised limit      7—8
Gibb's phenomenon      59—60 63—66
Green's function as transfer (or response) function      226—229 294—299
Green's function in complex variable theory      120
Green's function, found by firing pistol      228
Green's function, passing mention      163 225
Groechnig's algorithm for signal reconstruction      241—243
Guiness, does good by stealth      309
Hadamard gap theorem for natural boundaries      266—267
Hadamard prime number theorem      358—365
Hahn — Banach theorem in finite dimensions      123—124
Halmos, insufficiently asked question of      39
Hardy and Littlewood inequality      129
Hardy and Littlewood Tauberian theorem      102
Hardy nowhere differentiable function      46—47
Hardy test integral      60 208—209
Hardy transcendence of gamma, reward offered      349
Harpsichord      97—98
Harvard, mathematicians, mannerisms of      45
Hausdorff moment theorem      30—31
Hausdorff — Young inequality      136—139
Heisenberg inequality (uncertainty principle)      230—231
Herglotz theorem on positive definite sequences (simple version)      319—320
Hermite, quadrature formula      188
High definition TV      50
How not to index a book      381—385
How not to interpolate with polynomials      170 179—183
How not to throw dice      310
How not to write out a theorem      301 see
How to be almost sure a number is prime      342—343
How to build a harpsichord      97—98
How to conduct life      318
How to count change      259—262
How to expand in partial fractions      255—256
How to gamble, if you must      311—312
How to solve a linear difference equation      13—14
How to solve a linear differential equation      15 184—185
How to value stock options      377
Huygens, practical and theoretical work on pendulum clock      281—283
Inclusion-exclusion formula      348
Inequality, Bernstein (band limited functions)      240—241
Inequality, Bernstein (trigonometric polynomials)      10 176 188—189
Inequality, Bessel      133
Inequality, Cauchy (arithmetic-geometric)      124
Inequality, Cauchy, Schwarz, Bumakowski      122
Inequality, Hardy and Littlewood      129
Inequality, Hausdorff — Young      136—139
Inequality, Heisenberg      230—231
Inequality, Hilbert      128—129
Inequality, Hoelder      125
Inequality, Hoelder, converse      126
Inequality, Jensen (concave functions)      124—125
Inequality, Jensen (zeros of analytic functions)      114—115 288
Inequality, Tchebychev (polynomials)      188—189
Inequality, Tchebychev (probability)      25 79 197—198
Inequality, triangle      122 125 240
Inequality, Van der Corput (first and second)      129—131
Inequality, Van der Corput (related to equidistribution)      130—131
Inequality, Wirtinger      140 162 239—240
Infinite products      77 284—291
Insects, love life of      214 302
Interpolation by polynomials      25—27 170 178—183
Interpolation formula of Rivlin and Shapiro      185—189
Jackson approximation theorems      41 43—45 54
Jacobi, compulation of Legendre symbol      340—342
Jacobi, identity      238—239 354—356
Jacobi, remainder in Euler — Maclaurin formula      73
Jacobi, symbol      340—342
Jacobi, theta function      236—239
Jigsaw puzzle, mathematician's      231
Kahane and Katznelson, divergent Fourier series      82—84
Kahane, beautiful probabilistic arguments      261 371—372
Karamata, proof of Tauberian theorem      102—103
Katznelson      see "Kahane and Katznelson"
Kolmogorov everywhere divergent Fourier series      301—305
Kolmogorov zero-one law      267—9
Kramers — Kronig (causality) relations      234—236
Kronecker's theorem (on simultaneous approximation), another proof      337
Kronecker's theorem (on simultaneous approximation), used      301—305
Lacunary series      266—270
Lagrange's four squares theorem      300—301
Landau driven out of Gottingen      91
Landau sage advice      41
Laplace transforms, convolution, for      257—258
Laplace transforms, delicate treatment of      363—364
Laplace transforms, partial differential equations, used with      258
Laplace transforms, warning      93 see
Lattes, remarkable rational function      153—154
Lebesgue, proof of Weierstrass theorem      27—28
Lebesgue, thorn      115—117
Legendre symbol      338—343 345—346
Lerch's theorem, by complex variable      287 288
Levy's theorem on uniqueness of Brownian motion      374—376
Lipschitz condition      87—88
Littlewood      see also "Hardy and Littlewood"
Littlewood, obiter dicta      138 301
Matrices, fun with      95—96 157—158 248—251 301 307—308 314 327—328
Mean value theorems for integrals      67 202—203
Mellin transform      343—344 351—352
Minkowski, inequality      125
Minkowski, theorem on geometry of numbers      299—301
Monte Carlo method      51—52
Mordell, neat evaluation      198
Mordell, proof of Hadamard gap theorem      266—267
Mordell, suitable thesis topic      349
Natural boundary for analytical functions      264—270 286
Neumann problem      107—110
Newman D.J., makes hard things less hard      333—334 363—364
Newton — Cotes formula, problems with      169—70 278—279
Newton, sums of powers of roots      15—16
Nowhere differentiate functions, Brownian motion      371—372
Nowhere differentiate functions, Hardy      46—47
Nowhere differentiate functions, Van der Waerden      48
Nowhere differentiate functions, Weierstrass      46—47
Numerical analysts, wise sayings of      43
Numerical quadrature (integration)      168—170 180 278—279
Nyquist, criterion for feedback      296—297
Nyquist, rate for signal transmission      231—232 241—242
Oven, microwave, unsatisfactory      33
Pal, interpolation by polynomials with integer coefficients      26—27
Paley — Wiener type theorem      234
Parseval's equality for Fourier transforms      224 240—241
Partial fractions, how to get      255—256
Partial fractions, not as boring as they look      260—261
Peano, kernel theorem      21—23
Peano, space filling curve      49—50
Pendulum clock      281—283
Periodicities, hidden      34
Pi, computation of      77 284 331—334
Pisot number      15—16
Poisson, formula      61 222 231 239
Poisson, summation      100 103—105
Polya, infinity of primes      211
Polya, numerical quadrature      169—170 278—279
Polya, random walks      312—313
Polynomial, Bernoulli      68—71 73—74 76
Polynomial, Bernstein      25—26 246
Polynomial, Laguerre      166—167
Polynomial, Legendre      164—166 175
Polynomial, Rudin — Shapiro      138—139
Polynomial, Tchebychev      25 105 168—169 188—189
Polynomials, interpolation by      25—27 170 178—183
Polynomials, sums of powers of roots      15—16
Population, explosion      370
Population, oscillation      251—253
Positive definite quadratic forms      95—96
Positive definite quadratic sequencies      319—320
Potatoes, two, and string, what to do with      98—99
Prime number theorem, full, of Hadamard and de la Vallee — Poussin, proved      358—365
Prime number theorem, full, of Hadamard and de la Vallee — Poussin, used      173—175
Prime number theorem, limited, of Tchebychev, proved      171—173
Prime number theorem, limited, of Tchebychev, used      343 362—363
Prime numbers, probabilistic test for      342—343
Primes, infinity of Euclid      211
Primes, infinity of Polya      211
Radar, electronically steered      315—317
Radon transform      318—319
Random series, construction of Brownian motion using      366—369
Random series, example given by Fourier series of Brownian motion      372—374
Random series, Taylor, and natural boundaries      269—270
Random walk returns      312—313
Rate of convergence of approximations      41—45 53—54
Reconstruction of band limited signals      231—234 241—243
Response function (transfer function)      226—229 294—297
Richardson L.F., deferred approach to the limit      73 75
Riemann integral, unsatisfactory      127—128 135
Riemann — Lebesgue lemma      10 200—201 220
Riemann, Fourier series, work on      111—113
Riemann, fractional integrals      275—279
Riemann, functional equation for zeta      354—356
Riemann, hypothesis      361 364—365
Riemann, localisation (weak version)      201
Riemann, Mapping Theorem      118—121
Riemann, thesis report on      121
Riemann, zeta function      see "Main entry"
Rivlin and Shapiro interpolation formula      185—189
Salamin      see "Brent and Salamin"
Schur, I., evaluation of Gauss sum      326
Schur, I., proof of two inequalities of Hilbert      128—129
Schur, I., theorem on making change      259—261
Set theory, origin of      113
Shannon sampling theorem      231—234
Shapiro      see also "Rivlin and Shapiro"
Shapiro, MSc thesis      138
Simpsin's rule, error bounds for      22—23
Smith, genealogy applied to Brownian motion      371—372
Smith, why are we all called      371
Smith, why are we not all called      369—371
Smoke rings      216
Solvay and Strassen's probabilistic test for primes      342—343
Space filling curve of Liu Wen      49—50
Sphere, heating and cooling      32—33 216—218
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå