Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Mathematical Thought from Ancient to Modern Times, Vol. 3
Àâòîð: Kline M.
Àííîòàöèÿ: Now available in a new three-volume paperback edition, Morris Kline's monumental work presents the major creations in mathematics from its beginnings in Babylonia and Egypt through the first few decades of the twentieth century. Organized around the central ideas of mathematical thought, as well as the men responsible for them, this comprehensive history provides a broad panorama of the development of mathematics, displaying the unity behind the disconnected branches of the discipline today. Beginning with the origins of mathematics in Babylonia and Egypt, Volume One includes chapters on classical Greek and Alexandrian mathematics, Hindu and Arabic contributions, algebra in the sixteenth and seventeenth centuries, coordinate geometry, and the creation of calculus.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1990
Êîëè÷åñòâî ñòðàíèö: 448
Äîáàâëåíà â êàòàëîã: 03.04.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Netto, Eugen E. 1018 1139
Neugebauer, Otto 47
Neumann problem 685
Neumann, Carl Gottfried 666 685 704 711 1054
Neumann, John von 1092—1095 1186 1205
Newton — Raphson method 381
Newton, Sir Isaac, algebra 252 254 271—272 281 600 607
Newton, Sir Isaac, astronomy 365—369 470
Newton, Sir Isaac, biography 365—369
Newton, Sir Isaac, calculus 354 359—365 384 387 556
Newton, Sir Isaac, calculus of variations 573—574
Newton, Sir Isaac, compared with Leibniz 378—380
Newton, Sir Isaac, coordinate geometry 548—549
Newton, Sir Isaac, differential equations 470 475 491—493 497
Newton, Sir Isaac, function concept 339—340
Newton, Sir Isaac, infinite series 437—442 461
Newton, Sir Isaac, methodology of science 331 334
Newton, Sir Isaac, philosophy of science 219 616 620
Newton’s laws of motion 366—367 490
Newton’s parallelogiam 439—440 552
Nicholas of Cusa, Cardinal 241
Nichomachus 135—138 201
Nicole, Francois 548
Nicomedes 117—118 286
Nieuwentijdt, Bernard 385
Nine-point circle 837
Nobeling, A. Georg 1162
Noether, Emmy 931—932 1153 1180
Noether, Max 933—934 940—941 944
Non Euclidean geometry 729 861—881 947 1014 1025 see
Non Euclidean geometry, applicability 872—873 877 921—922
Non Euclidean geometry, axioms for 1015
Non Euclidean geometry, consistency 880 913—917
Non Euclidean geometry, hyperbolic 905—906
Non Euclidean geometry, implications 879—880
Non Euclidean geometry, models 888 905—906 912—917
Non Euclidean geometry, priority of creation 877—879
Non Euclidean geometry, single and double elliptic 904 906 912—913
Non-Archimedian geometry 1016
Non-Riemannian geometries 1133—1135
normal 560—561
Novikov, P.S. 1143
NUMBER 2930 see Irrational Negative Theory
Number, amicable 31 278 610
Number, hexagonal 31—32
Number, pentagonal 31
Number, perfect 31 78 137 278 610
Number, poligonal 137 277—278 829
Number, prime see Prime number
Number, square 30
Number, triangular 29—30 828
Ohm, Martin 976 987
Olbers, Heinrich W.M. 818 872 980
Oldenburg, Henry 273 370
Olympiodorus 580
Operator 1076—1077 1082 1085—1089 1094
Operator, hermitian 1092—1093
Opticks 358
Optics 88 166—168 196 212—213 285—286 307 314—315 357 579—581 740
Ordinal number 1000—1001
Ordinary differential equation 468—500 578 709—738 see Automorphic Qualitative Sturm Summability
Ordinary differential equation, adjoint 487
Ordinary differential equation, Bernoulli’s 474
Ordinary differential equation, Bessel’s 488—489 519
Ordinary differential equation, Clairaut’s 476—477
Ordinary differential equation, exact 476
Ordinary differential equation, existence theorems 717—721 1178—1179
Ordinary differential equation, first order 451 471—478
Ordinary differential equation, Fuchsian 721—722 724—726
Ordinary differential equation, higher order 484—487
Ordinary differential equation, hypergeomctric 489 712 723
Ordinary differential equation, Lame’s 721—722
Ordinary differential equation, Legendre’s 529 711
Ordinary differential equation, linear 485—487 730—732
Ordinary differential equation, Mathieu’s 713—714
Ordinary differential equation, method of series 488—489 709—712
Ordinary differential equation, nonlinear 483—484 732—738
Ordinary differential equation, periodic solutions 713—714 730—732
Ordinary differential equation, Riccati 483—484
Ordinary differential equation, second order 478—484
Ordinary differential equation, singular solutions of 476—478
Ordinary differential equation, systems of 490—492 735 742
Ordinary differential equation, variation of parameters 497—499
Ordinary differential equation, Weber’s 714
Oresme, Nicole 210—211 241 437
Orthogonal system of functions 716 1066
Orthogonal trajectories 474—475
Osculating circle 556
Osculating plane 559 561
Ostrogradsky, Michel 683 789—790
Ostrogradsky’s theorem see Divergence theorem
Oughtred, William 258
Oval of Descartes 315—316
Ozanam, Jacques 323 1028
P-adic fields 1146—1147
Pacioli, Luca 234—237 250—251 260
Painleve, Paul 737
Pappus 26 38 57 127—129 168 174 223 1005
Pappus — Guldin theorem 129
Pappus’s theorem 128 297—298
Papyri 16 20 25 132
Parabolic cylinder functions 714
Paradoxes of set theory 1182—1185
Parallel axiom 60 177 852 863—867 916 1012 1014
Parallel displacement 1130—1133
Parent, Antoine 545
Parmenides 27 150
Parseval inequality 1093
Parseval, Marc-Antoine 716—717
Parseval’s theorem 716—717 971 1047
Partial derivative 425
Partial differential equation 362 502—543 567—568 671—707
Partial differential equation, classification 700—701
Partial differential equation, existence theorems 685 699—707 1178—1179
Partial differential equation, first order 532—535
Partial differential equation, Hamilton Jacobi 744
Partial differential equation, heat equation 672—675 679 687—689
Partial differential equation, Helmholtz 693—696 1056
Partial differential equation, nonlinear 536—540
Partial differential equation, Poisson’s 682 684—685
Partial differential equation, potential 524 529 659 681—687 703—705
Partial differential equation, reduced wave equation 693—694
Partial differential equation, separation of variables 516—517 673—674
Partial differential equation, systems of 540—542 696—699
Partial differential equation, total 532
Partial differential equation, wave equation 502—522 690—694
Pascal triangle 272—273
Pascal, Blaise 219 252 258 272—273 395 1026 1028
Pascal, Blaise, biography 295—297
Pascal, Blaise, calculus 350 352—353 383—384
Pascal, Blaise, projective geometry 297—301 840
Pascal’s theorem 297—298 848
Pasch, Moritz 1008—1009 1137
Pasch’s axiom 1011—1112
Peacock, George 622 773—775 974—975 980
Peano curve 1018 1161
Peano, Giuseppe 988—989 1009—1010 1014 1018 1020 1038 1042—1043 1137 1162
Peano’s axioms 988—989
Peckham, John 213
Peirce, Benjamin 793 1023
Peirce, Charles S. 793 1144 1191
Peletier, Jacques 1005
Pell’s equation 278 610—611
Pemberton, Henry 392
Pendulum motion 337 469 471—472 479 556
Pericles 37
Periodicity modules 641 662
Permanence of form 773—775
Permutation see Substitution
Permutations and combinations 273
Persia 4 10
Perspective 231—234 286—287
Peurbach, George 238
Peyrard, Francois 57
PfafF, Johann Fnedrich 489 870
Philolaus 28 147—48
Philoponus 211
Pi, 10—11 19 134—135 251 255 353 439 448 593 980—982
Piazzi, Giuseppe 870
Picard, (Charles) Emile 668 705—706 720 945 1025 1037 1040 1070 1169
Picard’s theorems 668
Pick, Georg 1131
Pieri, Mario 1009—1010
Piero della Francesca 233 235
Pierpont, James 1096
Pitiscus, Bartholomaus 238
Pitot, Henri 545
Plateau, Joseph 750
Plato 26 38 42—47 47—48 150—151 154 395 1026
Plato, concept of mathematics 43—44 50—51 175
Platonic school 42—48
Playfair, John 865
Plucker formulas 857
Plucker, Julius 836 846 853—858 933
Plutarch 46 106
Poincare conjecture 1175—1176
Poincare — Bendixson theorem 737
Poincare, Henri 706—707 709 973 1003 1025—1026 1056 1145
Poincare, Henri, algebra 732
Poincare, Henri, algebraic geometry 938—939
Poincare, Henri, asymptotic series 1097 1104—1108
Poincare, Henri, automorphic functions 728—730 1139
Poincare, Henri, biography 706 1024 1170
Poincare, Henri, differential equations 704 706—707 732—737
Poincare, Henri, foundations 1086 1197—1199
Poincare, Henri, non—Euclidean geometry 916—917 921—922
Poincare, Henri, topology 1161—1162 1170—1176 1178—1179
Poincare’s last theorem 1178
Point at infinity 290
Poisson, Simeon—Denis 452 464 633 678—679 681—682 690—691 697 710 739—740 801 962 1024 1052 1100 1103 1110—1111
Polar coordinates 319
Pole and Polar 96—97 294 298—299 845
Polyhedra, regular 47 85—86
Poncelet, Jean Victor 834 836—837 840 841—846 906 933 1024
Pontrjagin, Lev S. 1180
Poree, Gilbert de la 206
Porphyry 57
positional notation 5—7 185
Potential theory 522—529 659 681—687 1055—1056
Potential theory, equation 524—529 659 682—687 703—705
Potential theory, function 524 682—686
Poudra, N.G. 289
Power series 643—644 see
Precession of the equinoxes 158 369
Primary and secondary qualities 326 329
Prime number 78 277 609 830—832 see Prime
Prime number theorem 830—832
Principia Mathematica 1193
Principle of continuity 385—387 841 843—845
Principle of duality 845—846 848—849 855
Principle of least action 581—582 587—589 620 739—745
Principle of least time 315 580—581
Principle of Stationary Phase 1099
Pringsheim, Alfred 1038
Printing 217
probability 273
Proclus 24 26 29 44 56 104 129 131 863—864 993 1005
Projectile motion 286 476 479
Projection 232 287
Projective geometry 233 285—301 834—859 1007—1010 see
Projective geometry, algebraic 852—859
Projective geometry, and metric geometry 904—923
Projective geometry, relation to Euclidean geometry 850—852 909 1033
Projective geometry, relation to non-Euclidean geometry 909—912 1033
Projective plane 290 1168
proof 14 20—22 34 44—46 50 144 171 198—199 282 383—389 393—394 426—434 617—619 1024—1026
Proof, indirect method of 33 44—45
Proportion 32 137—138 237
Proportion, Eudoxian theory of 68
Pseudosphere 893 905
Ptolemy dynasty 102—103
Ptolemy, Claudius 119 122—125 145 159—160 169 863 866
Puiseux, Victor 552 641—642
Puiseux’s theorem 552—553
Pure and applied mathematics 1036—1038
Pythagoras 27—34 46
Pythagorean number philosophy 219
Pythagorean Theorem 10 20 33 63—64 184
Pythagorean triples 10 31—32 34
Pythagoreans 27—34 49 147—150
Quadratic equation 8—9 19 186—187 192—193
Quadratic equation solved geometrically 76—77
Quadratic form 799—780 see
Quadratic form, infinite 1063—1066
Quadratic form, reduction to standard form 799 801—802
Quadratic reciprocity 611—612 813—815 817
Quadratrix 39—40 48
Quadrature 42
Quadric surface 108—110 168 545—546 848
Quadrivium 146 149—150 201—202
Qualitative theory of ordinary differential equations 732—738 1170
Quantics 928
Quantitative versus qualitative knowledge 333—334
Quartic equations 267—270
Quaternion 779—782 791 1025
Quetelet, Lambert A.J. 569 845 933
Quintic equation 763
Raabe, Joseph L. 1112
Radon, Johann 1050
Rameau, Jean—Philippe 515
Raphson, Joseph 381
Rate of change, instantaneous 344 360
Rayleigh, Lord (Strutt, John William) 684
Recorde, Robert 259—260
Reduction of singularities 941—942
Reformation 218
Regiomontanus see Muller Johannes
Regius, Hudalrich 278
Relativity 894 1130—1131
Religious motivation 219—220 359
Residue 638 640
Resolvent equation 604 760
Resultant 606—608 797—798
Revival of Greek works 205—207 216—217
Rhaeticus, George Joachim 238—239
Riccati, Jacopo Francesco, Count 483—484 500
Ricci tensor 1127
Ricci’s lemma 1129
Ricci—Curbastro, Gregorio 1122—1130
Richard, Jules 1183
Riemann four index symbol 894 1125
Riemann hypothesis 831
Riemann mapping theorem 666
Riemann problem 724 726 1069
Riemann surface 656—662 934—935 937
Riemann zeta function 831
Riemann — Lebcsgue lemma 1046—47
Riemann — Roch theorem 665 940
Riemann, Georg Friedrich Bernhard 1021 1030 1033 1077 1122
Riemann, Georg Friedrich Bernhard, biography 655—656 889 924
Riemann, Georg Friedrich Bernhard, complex function theory 656—666 934 939
Riemann, Georg Friedrich Bernhard, differential equations 691—693 722—724 727
Riemann, Georg Friedrich Bernhard, differential geometry 889—899 904 1122
Riemann, Georg Friedrich Bernhard, foundations of analysis 955 967—669
Riemann, Georg Friedrich Bernhard, non—Euclidean geometry 914
Riemann, Georg Friedrich Bernhard, theory of numbers 831
Riemann, Georg Friedrich Bernhard, topology 920
Riemann, Georg Friedrich Bernhard, trigonometric series 967—969 1040
Riemannian geometry 889—899 1126—1127 1131—1133
Riemannian geometry, applicability 893
Ðåêëàìà