Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Easy as Pi?: An Introduction to Higher Mathematics

Автор: Ivanov O.A.

Аннотация:

This book aims at introducing the reader possessing some high school mathematics to both the higher and the more fundamental developments of the basic themes of elementary mathematics. To this end most chapters begin with a series of elementary problems, behind whose diverting formulation more advanced mathematical ideas lie hidden. These are then made explicit and further developments explored, thereby deepening and broadening the reader's understanding of mathematics - enabling him or her to see mathematics as a hologram. The book arose from a course for potential high school teachers of mathematics taught for several years at St. Petersburg University, and nearly every chapter ends with an interesting commentary on the relevance of its subject matter to the actual classroom setting. However, it can be recommended to a much wider readership, including university-level mathematics majors; even the professional mathematician will derive much pleasurable instruction from reading it.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1998

Количество страниц: 187

Добавлена в каталог: 02.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Optical property of ellipse      131
Order      7
Order of a group      83
Order of an element in a group      39 43
Orientation-preserving isometry      125
Ornament      40
Orthogonal matrix      125
Orthogonal system      59
Orthogonal transformation      39
Ostrovskii's theorem      173
p-adic number field      173
Pairing in a graph      98
Parametrization of circle      66
Parametrization of curve      61
Parametrization of ellipse      61
Parity in a graph      88
Parseval's equation      60
Partition of a natural number      24
Pascal's triangle      17
Path in a graph      87
Pathwise connected      66 96
Pauli matrices      125
Peano, axioms of      5
Pendulum      148 152
Period of a function      107
Period of an ornament      40
Permutation      72
Picard method of solution of a d.e.      1
Pigeon-hole principle      103 111 115
Pinetree principle      11
Planar realization of a graph      91
Poincare's recurrence theorem      105
Polya      xiii
Polygon, simple plane      95
Polyhedron, regular      93
Polynomials, elementary symmetric      72
Polynomials, irreducible      81
Polynomials, prime      81
Polynomials, relatively prime      68
Polynomials, symmetric      72
Potential      147
potential energy      147
Power series      21 28 138
Prime number      82 113 172
Prime polynomial      81
Prime subfield      157
Principal ideal domain      81
Principle of least action      131
Pythagoras' theorem      59
Pythagorean triples      66
Quadrature      150
Quaternions      120
Quaternions, purely imaginary      125
Quaternions, unimodular      126
Quotient group      117
Quotient ring      25
Radius of curvature      136
Rational function      67 158
Rational number      155
Rational parametrization      67 69
Rational polynomial      80
Real numbers      156
Recurrence relation      2 17 20 26 28
Recurrent point      106
Recursion      2
Reflection      33
Reflection, glide      40
Regular point      144
Regular polyhedron      93
Regular value      144
Regular value of a polynomial      144
Relation      3 255 267 268
Relation in a group      39 41
Relatively prime numbers      67 74 83 174
Relatively prime polynomials      68
Remainder      105 113
Representation of a positive integer      113
Representation of greatest common factor      44
Resultant      76
Ring of formal power series      22
Ring of polynomials      73
Root      144
Root of a polynomial      68 70 71 80 122
Roots      68 70
Roots, common      75
Rotation      34 106
Rules of differentiation      129 135
Schwarz' inequality      59
SEQUENCE      52 53 137 141 149 156 161 162 167 168 170
Sequence, nonstandard      161 162
Set-of representatives      98
Skew-field of quaternions      120
Small oscillations      149
Smoothness class      145
Snell's law      131
Solution set      64
Space of continuous functions      56 141
Space, metric      139
Space, metric, complete      140
Stable equilibrium point      149
Stable roots      142
Standard part of a hyperreal number      159
Stereographic projection      93
Stiefel's theorem      121
Stirling's formula      29
Subalgebra      124
Subfield      81
Subgroup      40
Subgroup, closed      40 107
Subset, closed      35
Subset, compact      52
Subset, connected      66
Subset, convex      35 55
Subset, dense      78 106
Substitution in an integral      29
Symmetry group      38 40 43
Symmetry, axial      33 40
Symmetry, central      33 40
System of differential equations      107 108 109 147 149
System of one degree of freedom      147
System of small oscillations      151
Tangent line      129
Tangent vector      130 131 132
Tangent vector field      121
Tesselation      43
tetrahedron      94
topology      66 121
Torus      94
Tower of Hanoi      1
Trajectory      147
Trajectory, period of      150
Trajectory, stationary      149
Translation      33 40 110
Translation principle in nonstandard analysis      159 171
Transpose matrix      125
TREE      20 89 91
Tree, labelled      20
Ultrafilter      170
Unimodular quaternions      126
union      63 161
Unit ball      56 111 115
Upper number of a cut      164
Valency of a vertex of a graph      87
Vandermonde determinant      71
Variational system      108
Vector      35 42 50 55 116 121 128
Vector space      81
Velocity      130 134
Vertex of a graph      87
Viete      72 75
Volume      111 115 119
Volume-preserving      110
Weierstrass' theorem      52 57 163
Wirtinger's inequality      59
wronskian      107
Young tableau      25 27
Young's inequality      54 57 59
Zero-divisor      118 122
Zorn's lemma      170
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте