Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Johnstone P. — Stone Spaces
Johnstone P. — Stone Spaces



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Stone Spaces

Автор: Johnstone P.

Аннотация:

A unified treatment of the corpus of mathematics that has developed out of M. H. Stone's representation theorem for Boolean algebras (1936) which has applications in almost every area of modern mathematics.


Язык: en

Рубрика: Математика/Алгебра/Алгебраическая геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1986

Количество страниц: 370

Добавлена в каталог: 06.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Absorptive law      I 1.4 3
Adjunction      I 3.4 17
Adjunction monadic a.      I 3.6 21
Alexandrov algebra      IV 2.9 140
Alexandrov topology      II 1.8 45
Algebraic category      I 3.8 23
Algebraic lattice      VI 3.6 252
Algebraic poset      VII 2.3 288
atom      II 1.5 42
Boolean algebra      I 1.6 4
Boolean algebra, complete B. a.      I 4.4 27
Boolean ring      I 1.9 6
Bundle      V 1.2 770
Bundle, trivial b.      V 1.3 770
C*-algebra      IV 4.4 155
C-ideal      112 11
Cartesian category      I 3.5 20
Cartesian formula      V 1.12 180
Cartesian functor      VI 1.3 227
Category      I 3.1 15
Category, algebraic c      I 3.8 23
Category, cartesian c      I 3.5 20
Category, complete c      I 3.5 20
Category, concrete c      I 3.2 16
Category, equationally presentable c      I 3.8 23
Category, filtered c      I 3.9 24
Category, finitary algebraic c      I 3.7 22
Category, locally small c      I 3.2 16
Category, small c      I 3.5 19
Cocompletion      VI 1.8 231
Coherent axiom      V 1.10 178
Coherent formula      V 1.10 177
Coherent locale      II 3.2 63
Coherent map of locales      II 3.3 64
Coherent space      II 3.4 65
Colimit      I 3.5 19
Colimit, filtered c      I 3.9 24
Complement      I 1.6 4
Completely regular filter      IV 2.3 134
Completely regular ideal      IV 2.2 131
Completely regular locale      IV 1.5 127
Congruence      VI 2.6 240
Continuous lattice      VII 2.2 288
Continuous poset      VII 2.2 288
Continuous semilattice      VII 2.11 296
Continuous semilattice, stably c      VII 2.12 296
Coseparator      VI 4.1 254
Coverage      II 2.11 57
Cozero element      IV 2.9 140
Cozero-set      IV 2.5 137
Cut      III 3.11 109
Display space      V 1.4 172
Distributive law      I 1.5 3
Distributive law, complete d.1.      VII 1.10 278
Distributive law, continuous d      1. VII
Distributive law, infinite d.1.      II 1.1 39
F-ring      V 4.6 212
F-ring, L-local F-r.      V 4.9 216
F-ring, L-simple F-r.      V 4.10 216
Field      V 1.10 178
Field, formally real f.      V 4.11 217
Field, real-closed f.      V 4.11 217
Filter (in a lattice or semilattice)      I 2.2 12
Filter (in a lattice or semilattice), completely prime f.      II 1.3 41
Filter (in a lattice or semilattice), completely regular f.      IV 2.3 134
Filter (in a lattice or semilattice), prime f.      I 2.2 12
Filter (in a poset)      VII 2.5 290
Filter (in a poset), Scott-open f      VII 2.5 290
Filter (in a ring), concave prime f.      V 4.2 207
Filter (in a ring), prime f      V 3.2 192
Filter (in a ring), strictly positive f.      V 4.11 218
Filter (on a set)      III 2.2 94
Filter (on a set), neighbourhood f.      III 2.2 94
Finite (element in lattice)      II 3.1 63
Formula, cartesian f.      V 1.12 179
Formula, coherent f.      V 1.10/77
Formula, regular f.      V 1.13 180
Frame      II 1.1 39
functor      13 175
Functor, adjoint f.      I 3.4 17
Functor, cartesian f.      VI 1.3 227
Functor, comparison f.      I 3.6 21
Functor, direct image f.      V 1.8 175
Functor, faithful f.      I 3.4 18
Functor, final f.      VI 1.5 227
Functor, finitary f.      I 3.9 24
Functor, full f.      I 3.4 18
Functor, inverse image f.      V 1.8 J 75
Functor, monadic f.      I 3.6 21
Heyting algebra      I 1.10 8
Ideal (in a lattice or semilattice)      I 2.1 11
Ideal (in a lattice or semilattice), C-i.      112 11
Ideal (in a lattice or semilattice), completely regular i.      IV 2.2 131
Ideal (in a lattice or semilattice), fixed (maximal) i.      IV 3.5 145
Ideal (in a lattice or semilattice), maximal i.      I 2.4 13
Ideal (in a lattice or semilattice), prime L      I 2.2 12
Ideal (in a lattice or semilattice), principal L      I 2.1 //
Ideal (in a lattice or semilattice), regular i.      IV 2.2 133
Ideal (in a poset)      VII 2.1 286
Ideal (in a ring), L-l      V 4.6 211
Ideal (in a ring), neat i.      V 2.8 188
Ideal (in a ring), radical i.      V 3.2 193
ind-object      VI 1.2 225
Integral domain      V 3.11 203
Irreducible (closed set)      II 1.6 43
Irreducible (L-ideal)      V 4.6 212
Join      I 1.2 7
Join, directed j.      I 4.1 25
Join-semilattice      11 32
Jonsson — Tarski algebra      VI 2.5 238
L-ideal      V 4.6 211
L-ideal, irreducible L-i.      V 4.6 212
L-ring      V 4.4 210
Lattice      I 1.4 2
Lattice, algebraic 1.      VI 3.6 252
Lattice, complete 1.      I 4.3 27
Lattice, completely distributive l.      VII 1.10 278
Lattice, continuous l.      VII 2.2 288
Lattice, distributive l.      I 1.5 5
Lattice, normal (distributive) 1.      11 3.6 67
Lawson map      VII 2.10 295
Lawson topology      VII 3.3 301
Limit (of a diagram)      I 3.5 19
Limit (of a filter)      III 2.2 94
Local homeomorphism      V 1.5 172
Local homomorphism (of rings)      V 3.5 196
Local ring      V 2.7 186
Locale      II 1.1 39
Locale, $T_U$ 1.      III 1.5 84
Locale, coherent 1.      II 3.2 63
Locale, compact 1.      III 1.1 80
Locale, completely regular 1.      IV 1.5 127
Locale, exponentiable 1.      VII 4.10 317
Locale, extremally disconnected 1.      III 3.5 102
Locale, injective 1.      VII 4.9 316
Locale, locally compact 1.      VII 4.2 310
Locale, normal 1.      IV 1.6 128
Locale, regular 1.      III 1.1 81
Locale, spatiall.      II 1.5 43
Locale, stably locally compact 1.      VII 4.6 313
Locale, strongly Hausdorff l.      II 13 82
Locale, Vietoris l.      III 4.3 113
Locale, zero-dimensional 1.      III 1.1 81
Lower set      I 2.1 11
MacNeille completion      III 3.11 109
Meet      I 1.4 2
MI-space      IV 4.12 163
Natural transformation      I 3.1 16
Nilradical      V 3.6 197
Normal (distributive lattice)      II 3.6 67
Normal (locale)      IV 1.6 128
Nucleus      II 2.2 48
Nucleus, closed n.      II 2.4 50
Nucleus, dense n.      II 2.4 50
Nucleus, double-negation n.      II 2.4 51
Nucleus, open n.      II 2.4 50
Object      I 3.1 15
Object, E-projective o.      III 3.1 98
Object, exponentiable o.      VII 4.10 317
Object, finitely-presentable o.      VI 1.8 231
Object, projective o.      III 3.1 98
Order-Hausdorff      VII 1.1 271
Order-normal      VII 1.2 271
Pierce representation      V 2.3 183
Point (of a locale)      II 1.3 41
POSET      I 1.1 1
Poset, algebraic p.      VII 2.3 288
Poset, continuous p.      VII 2.2 288
Poset, Dedekind-complete p.      IV 4.11 161
Poset, directed p.      I 4.1 25
Poset, topological p.      VII 1.1 270
Positive cone      V 4.1 206
Presheaf      V 1.3 171
Prime element      11 1.3 41
Prime filter (in a lattice)      I 2.2 12
Prime filter (in a ring)      V 3.2 192
Prime ideal (in a lattice)      I 2.2 12
Pro-object      VI 1.9 233
Profinite      VI 2.3 236
Proper map      III 3.8 104
Pseudoiattice      IV 3.2 143
Reaicompact space      IV 3.7 147
Reaicompactification      IV 3.8 148
Real point (of $\beta$X)      IV 3.7 147
Real point (of spec A)      V 4.11 217
Really inside      IV 1.4 126
Reflection      I 3.4 18
Regular axiom      V 1.13 180
Regular element (in a Heyting algebra)      I 1.13 10
Regular formula      V 1.13 180
Regular ideal      IV 2.2 133
Regular locale      III 1.1 81
Regular monomorphism      1 3.5 20
Regular ring      V 2.6 185
Ring, domain representable r.      V 3.11 204
Ring, exchange r.      V 2.7 187
Ring, F-r      V 4.6 212
Ring, formally real local r.      V 4.13 219
Ring, Gelfand r.      V 3.7 199
Ring, indecomposable r.      V 2.2 182
Ring, L-r      V 4.4 210
Ring, local ordered r.      V 4.3 208
Ring, local r.      V 2.7 186
Ring, ordered local r.      V 4.13 220
Ring, ordered r.      V 4.1 206
Ring, regular r.      V 2.6 185
Ring, semiprime r.      V 3.2 193
SCALE      IV 1.4 726
Semilattice      I 1.3 2
Semilattice, complete s.      I 4.3 26
Semilattice, continuous s.      VII 2.11 296
Semilattice, join-s.      I 1.3 2
Semilattice, Lawson s      VII 3.3 301
Shadow      V 4.3 208
Sheaf      V 1.3 171
Sheaf, Pierce s.      V 2.3 183
Sheaf, Zariski s.      V 3.3 194
Site      112 11
Sober space      II 1.6 43
Soberification      II 1.7 44
Space, $T_D$-s.      II 1.7 44
Space, coherent s.      II 3.4 65
Space, display s.      V 1.4 772
Space, exponentiable s.      VII 4.12 320
Space, extremally disconnected s.      II 3.5 102
Space, injective s.      VII 4.7 314
Space, locally compact s.      II 2.13 61
Space, ordered s      VII 1.1 270
Space, projective s.      III 3.7 103
Space, pseudocompact s.      IV 3.7 148
Space, reaicompact s.      IV 3.7 147
Space, Sierpinski s.      VI 4.6 260
Space, Sober s.      II 1.6 43
Space, Stone s.      II 4.2 70
Space, totally disconnected s.      II 4.1 69
Space, totally order-separated s      II 4.7 74
Space, totally separated s.      II 4.1 69
Space, Vietoris s.      III 4.1 111
Space, zero-dimensional s.      II 4.1 69
Specialization      II 1.8 45
Spectrum      II 3.4 66
Spectrum, Brumfiel s.      V 4.2 208
Spectrum, domain s.      V 3.11 203
Spectrum, field s.      V 3.12 205
Spectrum, Keimel s.      V 4.6 212
Spectrum, maximal s.      II 3.5 66
Spectrum, Pierce s.      V 2.3 183
Spectrum, real s.      V 4.11 218
Spectrum, Zariski s.      V 3.1 192
Stably continuous      VII 2.12 296
Stably locally compact      VII 4.6 313
Stone space      II 4.2 70
Stone space, ordered S. s.      II 4.7 74
Stone — Cech compactification      IV 2.1 130
Subframe      II 1.1 40
Sublocale      II 2.3 50
Sublocale, closed s      II 2.4 50
Sublocale, dense s.      II 2.4 50
Sublocale, flat s.      III 1.11 90
Sublocale, open s      II 2.4 50
Symmetric difference      I 1.8 5
Topology, Alexandrov t.      II 1.8 45
Topology, interval t.      VII 1.11 279
Topology, Lawson t.      VII 3.3 301
Topology, lower interval t.      III 4.2 113
Topology, patch t.      II 4.5 72
Topology, Scott t.      II 1.9 46
Topology, Sierpinski t.      VI 4.6 260
Topology, upper interval t      II 1.8 45
Topology, Vietoris t.      Ill 4.2 112
Topology, Zariski t.      IV 3.3 145 V
Ultrafilter      III 2.1 93
Upper set      II 1.8 45
Vietoris locale      III 4.3 113
Vietoris space      III 4.1 111
Wallman base      IV 2.4 135
Wallman compactification      IV 2.4 136
Way below      VII 2.2 287
Well inside      III 1.1 80
Zariski representation      V 3.5 195
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте