Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Coxeter H.S.M. — Non-Euclidean Geometry
Coxeter H.S.M. — Non-Euclidean Geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Non-Euclidean Geometry

Автор: Coxeter H.S.M.

Аннотация:

Throughout most of this book, non-Euclidean geometries in spaces of two or three dimensions are treated as specializations of real projective geometry in terms of a simple set of axioms concerning points, lines, planes, incidence, order and continuity, with no mention of the measurement of distances or angles. This synthetic development is followed by the introduction of homogeneous coordinates, beginning with Von Staudt's idea of regarding points as entities that can be added or multiplied. Transformations that preserve incidence are called colineations. They lead in a natural way to elliptic isometries or "congruent transformations". Following a recommendation by Bertrand Russell, continuity is described in terms of order. Elliptic and hyperbolic geometries are derived from real projective geometry by specializing an elliptic or hyperbolic polarity which transforms points into lines (in two dimensions) or planes (in three dimensions) and vice versa.

An unusual feature of the book is its use of the general linear transformation of coordinates to derive the formulas of elliptic and hyperbolic trigonometry. The area of a triangle is related to the sum of its angles by means of an ingenious idea of Gauss. This treatment can be enjoyed by anyone who is familiar with algebra up to the elements of group theory.


Язык: en

Рубрика: Математика/Геометрия и топология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 6-th edition

Год издания: 1998

Количество страниц: 175

Добавлена в каталог: 12.11.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
K      see Curvature
Kepler (or Keppler), Johann      14
Klein's conformal model      258—263 266
Klein's projective model      157
Klein, Felix      13 14 17 33 95 107 115 126 139—144 153—160 182 209—212 215 220 224—226 243 248 252—264 295 300
Kronecker, Leopold      83
Laguerre, Edmond      107
Lambert, J.H.      6
Left generator      155
Left parallel      142 146 155
Left translation      139 146 149 155
Legendre, A M.      2 194
Length      6 103 106 157 180 248
Lieber, H.G. and L.R.      256
Liebmann, Heinrich      245 270 277 313
Light-ray      4
Line      1 4 14 20 24 see Elliptic Hyperbolic Ideal Projective
Line at infinity      24 31 106 117 178 186 192 195 200 209 217 253
Line, coordinates      see Tangential Plucker
Line, element      12 248 255 260 265 299 313
Linear complex      69 92
Linear congruence      92 151 155
Linear transformation      75 82 90 124 285
Lobatschewsky, N.I.      2 8—10 158 175 176 182 201 206—208 218 220 238 247 277 280 282 289 299
Logarithmic-spherical geometry      8
Loxodrome      298
Loxodromic sequence of tangent circles      293
Ludlam, William      3
Lune      242
Maclaurin, Colin      48
Matrix of a linear transformation      83
McClelland, W.J.      220 232—237
McClintock, Emory      266
Measuring-rod, variable      265
Medians      221
Menaechmus      48
Metric      see Distance Elliptic Hyperbolic
Mid-circle      265—266 297
Mid-line      267—273
Mid-point      100 180 268
Milne, W.P.      237
Minding, Ferdinand      256—257
Minkowskian geometry      178 256
Mlnkowski, Hermann      19
Model      13 23 97 157 203 253; Conformal Poincare
Moebius involution      265—266
Moebius, A.E.      83 118
Mohrmann, Hans      204 234
Moore, R.L.      179 186 187
Morris, W.S.      145
Multiplication of points      72
n-dimensional geometry      12 14 94 160 247 265 284
Napier, John      234 274 303
Net of rationality      73
Neumann, Carl      258
Non-Euclidean geometry      4 7 252
Non-homogeneous coordinates      12 122 144 145 248 251 283
Non-Legendrian geometry      194
Norm (of a quaternion)      123
Normalized coordinates      122 248
Null polarity      52 69 70 92
NUMBER      see Complex Rational Real ix
Obtuse-angle hypothesis      5 11
One-dimensional geometry      see Elliptic line Hyperbolic Projective
One-sided      33
Opposite congruent transformation      132 150 154 202;
Order in a pencil      164
Order on a conic      59
Order on a line      18 73 159
Ordered correspondence      35—40
Ordinary      see Ideal
Orientability      32—34 109 113 129
Orthocentre      223 231 236 239
Orthogonal circles      297
Orthogonal projection      260 264
Orthogonal transformation      123
Oval quadric      68 92 157 195 219
Owens, F.W.      199
Pangeometry      10
parabola      18 48
Parabolic geometry      197 212
Parabolic projectivity      43 75 203
Parallax      9
Parallel displacement      201—203 214
Parallel line and plane      177
Parallel lines      2 8 17 134 136 141—144 151 154 175—178
Parallel planes      185
Parallel rays      176 300
Parallelism      see Angle Axioms Symmetry Transitivity
Paratactic      134
Pascal, Blaise      48 59
Pasch, Moritz      159 166—173 179 186
Pencil axial      21
Pencil flat      6 20 58 158 175 199 213
Pencil generalized (axial)      166 169—171 184 193 213
Pencil of parallels      24 185 187 195 199 308
Pentagon complete      27 64 70
Pentagon simple      234 235
Pentagramma mirificum      234 275
Pentahedron, complete      27 64
Permutable correspondences      17
Permutable involutions      46 203
Permutable quaternions      123;
Permutable reflections      99 119
Permutable rotations      120
Permutable translations      99 139
Perpendicular line and plane      182
Perpendicular lines      18 110 121 133 147 157 181 224
Perpendicular planes      128 182
Perpendicular points      110 121 128
Perspectivity      21 22 39 40 43
Perspectivity double      34
Physics      4 24 209
Picken, D.K.      112
Pieri, Mario      18
Plane      20 162;
Plane at infinity      15 25 178 186 196 212
Playfair, John      3
Plucker, Julius      87 88 150 153
Poincare, Henri      ix 263—265 295 299 309 313
Point      1 4 14 20 24 161; Ideal
Point at infinity      6 14 19 77 106 158 177 186 192 195—206 239 296 298
Point of contact      56
Polar coordinates      314
Polar, line      52 65 91 128 193 227
Polar, plane      65
Polar, triangle      53 119 223 231 233 236
Polarity in a bundle      62
Polarity in a plane      52 85 187
Polarity in space      65 70 91; Degenerate Elliptic Hyperbolic Null Trilinear
Pole      52 65 117
Poncelet, J.V.      18 31 106
Posidonius      2
Postulates of Euclid      1 11 13 181 197 255
Power of a point      259 261
Preston, Thomas      220 223 232—237
Primitive forms      21
Proclus      2
Product of correspondences      16
Product of points      72
Product of rotations      118 141
Projection      21; see also Gnomonic Orthogonal Stereographic
Projective geometry      14; see also Complex Real
Projective line      28 31—33 35—47 71—77
Projectivities, one-dimensional      40—47 58—61 75 126 201—203
Projectivities, two-dimensional      49—52
Prosper, Reyes y      165
Pseudo-sphere      256
Pythagoras      1 275 296
Quadrangle complete      27 29 49 51 53
Quadrangle simple      5 6 190 194 241
Quadrangular set      44 72
Quadratic form      86 124 284
Quadric      68 94 207; Oval Ruled
Quadrilateral, complete      27 49 51
Quadruple contact      155
Quaternions      122—126 148—152
R, r      see Circum-radius In-radius
Radian measure      6 106 112
RANGE      20 59
ratio      77; see also Cross ratio
Rational number      72 171
Rationality net of      73
Ray      161
Real number      25 73 94
Real projective geometry      15 19—94 203 296
Reciprocal pencils of planes      193
Rectangular Clifford hyperbola      254
Rectangular Clifford surface      134 153
Reflection      3 14 97 104 106 111 129 153 201—203 213 263
Regions      34 159 162 241
Regions, eight determined by a tetrahedron      35 66
Regions, four determined by a triangle      34 55 81 220
Regions, seven determined by a quadrilateral      66
Regulus      62 94 134 272;
Relativity      11 19
Representation of lines by point-pairs      146—148 203
Representation of rotations by points      136—149
Reye, Theodor      219
Reyes y Prosper, Ventura      165
Rhumb line      298
Richmond, H.W.      9 285
Riemann, Bernhard      11 157 265
Righ translation, etc.      see Left
Right angle      1 13 113 181
Right segment      95 96
Right-angled triangle      117 231 234 238 272—282 296
Ring contact      155
Robb, A.A.      19
Robinson, G. de B.      22 31 50 59 71 78 87 96 154 159 165—173
Robson, Alan      28
Rodrigues, Olinde      109
Rotation      14 111—114 118—120 122—126 130 136—150 214;
Rotatory reflection      131 273
Ruled quadric      68 92—94 134 144 153 271
Russell, Bertrand      18 23 34 160
S(ABC)      32
Saccheri, Gerolamo      5 11 190 210
Schilling, Friedrich      209 245
Schlaefli, Ludwig      9 12 247
Schoute, R.H.      94
Schur, Friedrich      166—173
Schweikart, F.K.      7
Secant      56 68 87
Sector      249 250
Segment      23 161
Segment shortest      133
Self-duality      48 117
Self-perpendicular      126
Self-polar lines      67—70
Self-polar tetrahedron      65 91 129
Self-polar triangle      53—57 86 110
Semi-Euclidean geometry      187
Sense      31 100
Separation      18 22 31 164 174
Seydewitz, E.      57 219
Siegel, C.L.      312
Sine rule      11 233 238
Singly-asymptotic triangle      188 189 210
Skew lines      21 42 63 133—134 270
Sommerville, D.M.Y.      3 12 94 95 143 198 222 227 229 237—240 257—260 275
Space      see Curvature Finite Homogeneous
Special linear complex      92
Sphere      218 255 258
Spherical geometry      6 10—13 259 264
Spherical trigonometry      8 232 273—276
Staeckel, Paul      6
Steiner, Jacob      18 48 58 219
Stephanos, Cyparissos      120 237
Stereographic projection      258 264 293
Study, Eduard      146 151—156
Subtraction of points      71
Summation convention      83
Supplementary angles      113 181
Supplementary rays      162
Supplementary segments      31 100
Sylvester, J.J.      109
Symmetry of parallelism      176
Szasz, Paul      295
Tangent circles      297
Tangent line      56 68 117 126 195 221
Tangent plane      62 68
Tangential coordinates      79 87
Tangential equations      80 122 228
Taurinus, F.A.      8 238
Tessellation      ix
tetrahedron      26 35; Volume
Tetrahedron of reference      87 91
Thales      1
Third order contact      218
Tractroid      257
Transformation      17 120; Coordinate Fractional Linear Orthogonal
Transitivity of parallelism      177
Translation      97 104—106 112 135—142 149 155 201—204
Translation continuous      101—103 214
Trebly asymptotic      188 210 240 244 245 301 315
triangle      ix 34 57 200 220—223 257; Angle-sum Area Colunar Diagonal Doubly-asymptotic Polar Right-angled Self-polar Singly-asymptotic Trebly-asymptotic
Triangle of reference      78 86 229—240
Triangular prism      293
Trigonometry      8 104; Hyperbolic
Trihedron      14 164 274
Trilinear coordinates      237
Trilinear polarity      30 52 79 160 221 230
Trirectangle      6 194 277
Tucker, A.W.      145
Types of polarity      67—69
Ultra-infinite      192 195 200 225 239
Ultra-parallel lines      188 191 199 204 268 295
Uniform polarity      66 91 95 128 194
Unit of measurement      6 201 206 241—242 250 265 299
Unit point      78
Vailati, Giovanni      18 22
Veblen, Oswald      17 18 22 23 27 31—34 72—74 86 91—94 101—103 157 161—175 202 203 218
Vector (localized)      119 137
Volume of a tetrahedron      9 247 285—289
von Staudt, G.K.C.      18 22 40 44 48—66 70—77 219
Wachter, F.L.      7 220
Wallis, John      2
Whitehead, A.N.      160 166—173
Wood, P.W.      93
Young, J.W.      17 27 31 72—74 93 94 218
Zeuthen, H.G.      48
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте