Авторизация
Поиск по указателям
Gray J.J. — Linear Differential Equations and Group Theory from Riemann to Poincare
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Linear Differential Equations and Group Theory from Riemann to Poincare
Автор: Gray J.J.
Аннотация: This book is a study of how a particular vision of the unity of mathematics, often called geometric function theory, was created in the 19th century. The central focus is on the convergence of three mathematical topics: the hypergeometric and related linear differential equations, group theory, and non-Euclidean geometry.
The text for this new edition has been greatly expanded and revised, and the existing appendices enriched with historical accounts of the Riemann — Hilbert problem, the uniformization theorem, Picard-Vessiot theory, and the hypergeometric equation in higher dimensions. The exercises have been retained, making it possible to use the book as a companion to mathematics courses at the graduate level.
This work continues to be the only up-to-date scholarly account of the history of a branch of mathematics that continues to generate important research, for which the mathematics has been the occasion for some of the most profound work by numerous 19th century figures: Riemann, Fuchs, Dedekind, Klein, and Poincar.
Язык:
Рубрика: Математика /Симметрия и группы /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: второе
Год издания: 2000
Количество страниц: 179
Добавлена в каталог: 29.04.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Abel, H. xvi
Abelian functions 21 25 28 30 42 43 50 146 148 168 171 177 217
Accidental singular point 43 59 63 64 284
Algebraic addition theorem 32
Algebraic curve 82 121 141 146 148 152 185 193 194 211 212 265 294 298
Analytic continuation by Gauss 10
Analytic continuation by Poincare 175
Analytic continuation not by Kummer 16
Anosov and Bolibruch xiii 239 243—245
Appell, P. 278
Arithmetico-geometric mean (agm) 3
Beltrami, E. 255
Bernoulli numbers 8 35
Bernoulli, Jakob 31
Betti, E. 121 122 125
Bianchi, L. 184
Biermann, K.R. 56
Birkhoff, G.D. 240—243
Bitangents to a quartic 144 145 146 152 162
Bolyai, J. 193 253 258
Bottazzini, U. 283 294
Boulanger, A. 274
Boundary cut (Querschnitt) 22
Branch point 23
Brioschi, E 86 96 124 125
Briot and Bouquet 29 43 96
Casorati — Weierstrass 30 43
Cauchy, A.L. 28—30
Cayley, A. 47 256—258
Clebsch, R. 148 152
Clemens, H. 50
Connectivity (order of) 22
Dedekind introduces Klein’s J -function 110
Dedekind, R. 107
Dedekind, R., -function 111
Dedekind, R., on Galois theory 119
Dedekind, R., on modular functions 107 108 114 115
Dirichlet principle 23 55 148 191 223 224 228—230
Elliptic functions 3 14 20 30 55 73 101 104 110 114 124 126—128 135 177—179 181 184 186 195 204 205 216 219 227 236 273 274 281—283 296 298
Elliptic functions, invariants of 127
Elliptic integrals xvi 4 11 12 20 31 54 101 127 147 157 168 184 215 216 292
Equations of Fuchsian class 46
Erlanger Programm 76 83
Euler, L. 1 2 31 32 275
Factorial function of Gauss 7
Factorial function of Legendre 7
Forms, theory of (invariant theory) 76 82
Forsyth, A.R. 85 217 219
Freudenthal, H. 28 120 198 199 283
Fricke, R. 220 221 225 265 301
Frobenius, G. 55
Frobenius, G., on Fuchs’ work 55
Frobenius, G., on irreducible equations 57
Frobenius, G., on Thome’s work 61
Fuchs, L.I. 42 101 115 178 180
Fuchs, L.I., on hge 49
Fuchs, L.I., on Picard — Fuchs equation 50
Fundamenta Nova 12 127 216
Galois group 84 161
Galois, E. 115
Gauss, C.F. 2—11 33 235
Geiser, C.F. 146
Gilain, Ch. 28 29
Goethe, J.W. 300
Gordan, P. xv 69 76
Gordan, P., all solutions algebraic problem 88
Goursat, E. xiii 278—280
Grenzkreis theorem 199
Group theory 76
Halphen, G.H. 95—97 157 169
Hamburger, M. 61 62 210 232 248 295
Hawkins, T. 62 248 260 285 292 300 302
Heaviside, O. 275 277 278
Hermite, Ch. xvi xvii 25 27 54 65 77 80 95 97 101 104—108 111 114 118 122—126 134 135 166 168 169 176 178 183 184 236 259 279 292—294 300
Hermite, Ch., solution of quintic, xvi 101 122—124
Hesse, O. xvii 98 99 142 144 146 152 162—164 166 296
Hesse’s group 291
hessian 80 84 86 89 96 126 142 156 289 292 295 296
Heun’s equation 67
Hilbert, D. 148 220 224 234 237—239 241 245 263—265
Hurwitz, A. xviii 64 112 157 184 188 196 199 270 297—299
Hypergeometric equation (hge) xiii xv xvi 1 2 5 10 15 16 18 20 23—28 34 48—50 54 58 69 73 75 81 85 86 111 128 170 183 184 187 219 220 224 231 232 234 236 271 275 276 278 287
Hypergeometric series (hgs) 1 3 11 14 15 23 27 34 58 59 70 73 111 181 183 229 276 278 279 281 283 286 287
Hypergeometric series (hgs), compared to P-functions 26 111
icosahedron 73 81 83 84 86 126 133 134 290 297
Indicial equation 41 47 49 52 53 57 59—61 64 170 171 178 184 211—215 218—220 270 285
Invariant theory 69 75 76 79 82 83 87 88 95 120 126 200
J-function 127—131 161
Jacobi, C.G.J. xvi 1 3 11—14 20 28 104—106 114 116 123 124 126 142—144 146 148 149 152 168 176 215 216 237 283 286 296
Jacobi, C.G.J., on inversion 170
Jordan, C. 76 89—95 146
Jordan, C., his canonical form 61 62
Klein, C.F. xv—xx 2 3 6 16 25 65 69 73 76 77 80 82 152 185 203 258 260 264 298
Kleinian functions named 193
Koebe, P. xiv 263—266
Koenigsberger, L. 42 52 106
Kronecker, L. 14 42 74 77 88 101 115 118 119 124—126 166 228 293 296 298
Kronecker, L., on Galois theory 115 117 121
Kummer, E.E. xvi 11 14—18 20 23 28 42 46 124 258 279 283
Lame’s equation 65 168
Laurent, PA. 30 43 284
Legendre, A.M. xvi 3 7 11 20 33 54 216 254
Legendre’s equation xvi xvii 5 11 13 14 37 38 54 102 114 184 212
Legendre’s relation 34 54 285 286
Liouville, J. 49 50 116 168 273 274 301
Lobachevskii, N.I. 182 193 253—258
Lutzen, J. 49 273
Mathieu’s equation 65
Mobius transformations 36 73 217 264 301
Modular equations xviii 101 113—117 121—127 132—135 137 141 152 157 161 166 219 293
Modular functions xv—xix 1 54 101 104 123—126 132 133 136 152 161 177 184 188 193 198 265 296 298
monodromy xv—xvii 10 16 25—27 37 38 41 47 51—53 55 69 78 80 84 86 90 92 94 96 98 102 105 106 118 134 170 209 210 214 215 217 219 220 233 237 238 243—245 268 272 273 287 292
Monodromy, matrix of 38 43 44 46 54 61 62 102 106 210 232 238 239 243 248
Natural boundary 74 103 229
Neuenschwander, E. 30 42 43 196 283 288 296
Neumann, C.A. xviii 185
Newton, I. 31 141
Non-Euclidean geometry xix 82 95 99 120 180 182—184 186 188 189 192 193 196 200 201 204 209 221
Non-Euclidean geometry, history of 253
P-function of Riemann xix 23 24 26 27 39 72 111 232 234 235 279 287
Papperitz, E. 27 37
Pepin, J.F.T. 273 274 303
Pfaff, J.F. 2 3 6
Picard — Fuchs equation 50
Picard, E. xiii 168 169 188 267—271 278—280 301
Plemelj, J. xiii 219 220 239—243
Plucker, J. xvii 120 141—145 152
Plucker’s paradox 143
Pochhammer’s differential equation 279
Poincare, H. 173
Poincare, H., writes to Fuchs 173
Poncelet, J.V. 142 143 274
Prym, F 46 185
Puiseux, V. 27—29 48 284
Purkert, W. 108 119 120 288
Richards, J. 256
Salmon, G. 151 295
Schlafli, L. 23 27 105—107 138 139
Schlesinger, L. xiii 42 103 113 219 220 231 239 267 268 272 281 282
Schlissel, A. 55
Scholz, E. 254 255 284 296 301
Schottky, R 190 194 195 199 217 223—225 265
Schwarz reflection principle 225
Schwarz, H.A. xv 70—75 189—191
Schwarzian derivative 71
Singer, M. xiii 273 274
Singular moduli 104
Singular point 44
Steiner, J. 145 146 152 295
Stillwell, J. 213 255
Syddall, R. 98 99
Sylow theory 90 92 93 118
Tannery, J. 61 62 105
Theta function 148 177 181 184 187 296
Theta-Fuchsian 181—184 187 193 196 208 209 214 216
Thomae, J. 55 286 287
Thome, L. 42 55 59—61 214 287
Toth, I. 256 302
Transvectant (Uberschiebung) 84
Uniformization theorem 193 203
val (Dedekind’s function = Klein’s J-function) 110—113
Wallis, J. 2
Weierstrass, K. xix 1 3 14 21 23 30 42—45 50 56 62 74 127 146—148
Wussing, H. 76 117 118 282 288
Zeta function 23 177 215 216
Zeta-Fuchsian function 183 193 198 201 209 215—217 219 239
Реклама